Jianxin Tang, Jiaqiang Fu, Xinyue Li, Lele Geng, Juan Pang
{"title":"Probing the fitness landscape of the influential nodes for the influence maximization problem in social networks","authors":"Jianxin Tang, Jiaqiang Fu, Xinyue Li, Lele Geng, Juan Pang","doi":"10.1016/j.swevo.2025.102002","DOIUrl":"10.1016/j.swevo.2025.102002","url":null,"abstract":"<div><div>Influence Maximization (IM) is a key issue of information dissemination and has been proved to be an NP-hard problem. However, traditional methods always suffer from low efficiency, poor scalability, and tend to fall into local optima. Probing the promising distribution regions of the potential influential nodes from the macroscopic perspective is necessary and helpful in understanding the influence propagation. To address such challenges, this paper makes attempt to depict the fitness landscape distribution of the expected influence of the social individuals in the network from a novel perspective. An entropy measure is introduced as a decision criterion and a fitness landscape-guided differential evolution optimization (FLDE) is proposed. Firstly, the distribution of the potential solution regions is depicted by characterizing the fitness landscape designed specially for IM problem. Next, a guiding strategy based on the fitness landscape is conceived to drive the differential evolution towards more promising solution regions by avoiding the entrapment in local optima. Experiments conducted on six real social networks and three synthetic networks indicate that the FLDE outperforms the state-of-the-art baselines by an average of 16% in influence spread and shows strong scalability when dealing with different types of networks.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"97 ","pages":"Article 102002"},"PeriodicalIF":8.2,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144212125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A hybrid surrogate co-assisted evolutionary algorithm with prediction fusion interpolation sampling strategy for expensive optimization problems","authors":"Zihe Shi , Qinghua Su , Zhongbo Hu , Gang Huang","doi":"10.1016/j.swevo.2025.102003","DOIUrl":"10.1016/j.swevo.2025.102003","url":null,"abstract":"<div><div>Hybrid surrogate-assisted evolutionary algorithms, which achieve the purpose of assisting search by hybridizing local and global surrogate models, are a kind of competitive state-of-the-art techniques for solving expensive optimization problems (EOPs). The sampling points of the local models have been introduced but are failed to investigate directly in this field. In fact, sampling points are one of important determinants of model performance. Unlike the existing technologies including superior individuals sampling and neighboring individuals sampling, this paper develops a prediction fusion interpolation sampling strategy (PFs) and proposes a hybrid surrogate co-assisted evolutionary algorithm with it (HSCEAwP). The presented PFs applies all the best predictions of the local and global models of all historical populations as the sampling points of the next local surrogate model. The proposed HSCEAwP inherits the optimization framework of the generalized multifactorial evolutionary algorithm. The radial basis function model is chosen as the modeling basis of the local and global surrogate models. The performance of PFs under radial basis function model is analyzed theoretically and experimentally based on the interpolation principle. The performance of HSCEAwP is tested on eight common benchmark problems, ten CEC2017 composition problems and an electrostatic precipitator optimization problem. The experimental results demonstrate more reliable performance of HSCEAwP to well-established algorithms in terms of solving accuracy.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 102003"},"PeriodicalIF":8.2,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinlong Zhou , Yinggui Zhang , Juan Wang , Yang Xiao , Yuhan Wang , Xupeng Wen , Lining Xing
{"title":"Data-driven assisted multiobjective routing optimization for multimodal transportation under fuzzy demand","authors":"Jinlong Zhou , Yinggui Zhang , Juan Wang , Yang Xiao , Yuhan Wang , Xupeng Wen , Lining Xing","doi":"10.1016/j.swevo.2025.101997","DOIUrl":"10.1016/j.swevo.2025.101997","url":null,"abstract":"<div><div>Multimodal transportation, as an efficient and comprehensive transport mode in the modern logistics system, significantly improves logistics efficiency and reduces costs by integrating various transportation modes. However, due to uncertainties such as weather conditions, logistics companies cannot accurately grasp and predict freight transportation demand. Additionally, the time-sensitivity requirements of multimodal transportation frequently lead to delays in freight transportation. To characterize the randomness and uncertainty of transportation demand parameters, triangular fuzzy numbers are introduced as a descriptive tool. A multiobjective optimization model for low-carbon multimodal transport routing under uncertain demand is constructed, aiming to minimize total transportation cost and carbon emissions. Monte Carlo simulation combined with data-driven methods is employed to sample and analyze uncertain demand, effectively addressing demand uncertainty. To solve the developed model, a novel multi-form competitive swarm optimization algorithm is proposed, which enhances both the quality and efficiency of the solutions. The experimental results indicate that compared to peer algorithms, the proposed algorithm achieves a better tradeoff in diversity, convergence, and feasibility, ultimately obtaining superior performance.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 101997"},"PeriodicalIF":8.2,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Jiang , Huoyuan Wang , Pingping Tong , Juanjuan Hong , Zhe Liu , Xing Zhuang , Benyue Su , Fei Han
{"title":"A heterogeneous sparsity knowledge guided evolutionary algorithm for sparse large-scale multiobjective optimization","authors":"Jing Jiang , Huoyuan Wang , Pingping Tong , Juanjuan Hong , Zhe Liu , Xing Zhuang , Benyue Su , Fei Han","doi":"10.1016/j.swevo.2025.102000","DOIUrl":"10.1016/j.swevo.2025.102000","url":null,"abstract":"<div><div>Research on sparse large-scale multiobjective optimization problems (LSMOPs) is rapidly growing due to their diverse applications in science and engineering. Existing studies typically employ static or dynamic knowledge to guide the search in evolutionary algorithms for solving sparse LSMOPs. However, relying solely on a single type of sparsity knowledge may result in ambiguous guidance and suboptimal optimization. To address this, we propose an evolutionary algorithm based on heterogeneous sparsity knowledge (HSKEA). In this approach, static knowledge is represented by a scoring vector to assess the importance of each decision variable, while dynamic knowledge is captured by indicator vectors that identify whether a decision variable is zero or non-zero and iteratively updates based on the population distribution. Two types of populations, including main and auxiliary populations, are initialized using both dynamic and static knowledge and evolved through a new genetic operator guided by heterogeneous sparsity knowledge and information sharing. Experimental results comparing HSKEA to four state-of-the-art algorithms across eight benchmark test problems and three real-world scenarios demonstrate its effectiveness.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 102000"},"PeriodicalIF":8.2,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan Shi , Yaoming Yang , Bingdong Li , Hong Qian , Hao Hao , Aimin Zhou
{"title":"Diversity-enhanced hyper-heuristics for multi-objective dynamic flexible job shop scheduling","authors":"Yuan Shi , Yaoming Yang , Bingdong Li , Hong Qian , Hao Hao , Aimin Zhou","doi":"10.1016/j.swevo.2025.101994","DOIUrl":"10.1016/j.swevo.2025.101994","url":null,"abstract":"<div><div>In the realm of multi-objective dynamic flexible job shop scheduling (MODFJSS), the prevalent reliance on genetic programming based hyper-heuristics (GPHH) has been identified as a bottleneck with quality-limited and redundant heuristics. To deal with these issues, this study introduces a novel approach named Diversity-Enhanced Hyper-Heuristics (DEHH). Our methodology encompasses three strategic thrusts: First, we introduce a multi-grained knowledge (MGK) method to represent knowledge more accurately. Second, we propose an explicit knowledge sharing (EKS) mechanism coupled with surrogate models to discern a diverse set of problem-relevant knowledge. Third, we design a multiple Pareto retrieval (MPR) mechanism to curb the proliferation of duplicate heuristics during evolution. Through comprehensive experimentation, we demonstrate that DEHH achieves superior generalization ability and diversity performance across various scenarios compared with state-of-the-art GPHH algorithms.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 101994"},"PeriodicalIF":8.2,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144203748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marko Đurasević , Mateja Đumić , Francisco Javier Gil Gala
{"title":"Enhancing automatically designed relocation rules with the rollout algorithm","authors":"Marko Đurasević , Mateja Đumić , Francisco Javier Gil Gala","doi":"10.1016/j.swevo.2025.101975","DOIUrl":"10.1016/j.swevo.2025.101975","url":null,"abstract":"<div><div>The container relocation problem (CRP) is a complex optimisation problem in maritime transport. To solve this problem, heuristic approaches are often used, ranging from relocation rules (RRs) to metaheuristics. Although metaheuristics outperform RRs, the latter remain popular due to their simplicity and adaptability. The manual design of RRs is challenging, which is why genetic programming (GP) is used to automatically generate them. However, RRs generated by GP generally achieved inferior solutions compared to metaheuristics. To close this gap, this study applies the rollout method to improve the performance of RRs while maintaining reasonable execution times. The rollout algorithm strikes a balance between exhaustive and heuristic search by combining partial enumeration with RR-based decision evaluation. Although the rollout method improves the quality of the solution, it also leads to considerable computational cost. To solve this problem, three strategies for reducing the search space are proposed. Experimental results show that the rollout algorithm significantly improves solution quality compared to standard RRs, with the proposed search space reduction techniques effectively reducing execution time without compromising performance. In particular, the results show that the rollout algorithm can be executed 2 to 4 times faster using the proposed reduction techniques, while its performance is reduced only by 1%.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 101975"},"PeriodicalIF":8.2,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144184539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Lin , Sheng Xin Zhang , Shao Yong Zheng , Kwai Man Luk
{"title":"Archive assisted fully informed evolutionary algorithm for expensive many-objective optimization","authors":"Jie Lin , Sheng Xin Zhang , Shao Yong Zheng , Kwai Man Luk","doi":"10.1016/j.swevo.2025.101988","DOIUrl":"10.1016/j.swevo.2025.101988","url":null,"abstract":"<div><div>In many real-world engineering and scientific optimization scenarios, practitioners often face expensive many-objective optimization problems where evaluating candidate solutions incurs prohibitive computational costs. The inherent scarcity of truly calculated data often leads to the construction of models with high uncertainty using limited datasets. This uncertainty can adversely affect the Surrogate-assisted Many-Objective Evolutionary Algorithms (SAMaOEAs). To address this issue and enhance performance, this paper introduces an Archive-assisted Fully Informed Evolutionary Algorithm (AFIEA). In AFIEA, two kinds of models are constructed from archive data to simultaneously predict objective values and uncertainty trends (whether the predictions are overestimated or underestimated). With this foundation, both the optimizer and infill criterion processes are fully guided by the predicted objective values and uncertainty trends. In the optimization phase, a novel Uncertainty Trend Classification (UTC)-based Upper Confidence Bound is employed as the acquisition function. During the infill criterion phase, UTC is used to preprocess the population, enhancing the selection probability of under-estimated solutions, while an archive-based metric selects more precise solutions, guided by the archive in terms of convergence and diversity. The performance of AFIEA is compared with six state-of-the-art SAMaOEAs on artificial benchmark problems and one real-world expensive optimization problem within a limited budget. In the benchmark tests, AFIEA outperforms the six advanced SAMaOEAs across most of the test functions, demonstrating that the proposed mechanism offers strong generality and enhanced search performance. Additionally, in the optimization of electromagnetic devices, AFIEA achieves superior population quality in a shorter time with a limited number of simulations.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 101988"},"PeriodicalIF":8.2,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengyu Jin , Peng Zhang , Youlong Lv , Ming Wang , Wenbing Xiang , Hongsen Li , Jie Zhang
{"title":"A hybrid surrogate-assisted dual-population co-evolutionary algorithm for multi-area integrated scheduling in wafer fabs","authors":"Mengyu Jin , Peng Zhang , Youlong Lv , Ming Wang , Wenbing Xiang , Hongsen Li , Jie Zhang","doi":"10.1016/j.swevo.2025.102016","DOIUrl":"10.1016/j.swevo.2025.102016","url":null,"abstract":"<div><div>In wafer fabrication, multiple areas handle different processes and production flows. To maintain the desired chemical and physical properties of wafers, strict time window constraints (TWCs) must be observed as wafers progress through these areas. However, independent scheduling within each area without collaboration complicates resource allocation and hinders overall production optimization. Implementing multi-area integrated scheduling is thus essential for effective production management, aiming to reduce total lead time and production costs. This paper proposes a hybrid surrogate-assisted dual-population co-evolutionary algorithm (HSA-DPEA) to efficiently tackle the multi-area integrated scheduling problem under multiple TWCs. The algorithm employs a dual-population co-evolutionary mechanism, consisting of normal and auxiliary populations, to balance convergence and diversity while ensuring feasibility. The normal population focuses on feasible solutions to maintain overall quality, while the auxiliary population explores infeasible regions to identify promising individuals that can guide the normal population's evolution. To enhance evolutionary efficiency and reduce the number of time-consuming real fitness evaluations, a hybrid surrogate-assisted model is introduced. This model adapts by training regression or classification models at different stages of population evolution. Additionally, an online learning strategy based on convergence and diversity is employed for continuous model updating to improve accuracy. The proposed algorithm is tested on 18 instances and validated through six months of continuous testing on a wafer fab simulation system. The results demonstrate that HSA-DPEA obtains better Pareto optimal sets, effectively reducing total lead time and production costs in multi-area integrated scheduling under multiple TWCs.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 102016"},"PeriodicalIF":8.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A balance-oriented iterative greedy algorithm for the distributed heterogeneous hybrid flow-shop scheduling problem with blocking constraints","authors":"Xiuli Wu, Yang Zhao","doi":"10.1016/j.swevo.2025.102015","DOIUrl":"10.1016/j.swevo.2025.102015","url":null,"abstract":"<div><div>With the globalization of economy, production tasks usually need to be allocated among multiple factories to achieve a more efficient delivery. This paper studies the distributed heterogeneous hybrid flow-shop scheduling problem with blocking constraints (DHHFSPB) and proposes a balance-oriented iterative greedy algorithm(BOIG). The sigmoid-based adaptive(SA) decoding method is proposed to dynamically explore the solution space. Considering the characteristics of the problem, four initialization methods are developed to generate the initial solutions. Various operators are presented to balance the loads among factories. Some production tasks in the high-load factories are reassigned to the low-load factories by the perturbation operator. The structure of the solution is reorganized by the destruction and construction operators in a load-oriented manner. The local search operator balances the exploration and exploitation and a new neighborhood structure for the distributed problem is proposed. Additionally, an improved metropolis criterion is adopted to accept solutions. The results of experiments show that the BOIG algorithm can effectively solve the DHHFSPB.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 102015"},"PeriodicalIF":8.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Razieh Khayamim , Ren Moses , Eren E. Ozguven , Marta Borowska-Stefańska , Szymon Wiśniewski , Maxim A. Dulebenets
{"title":"Swarm intelligence applications for emergency evacuation planning: state of the art, recent developments, and future research opportunities","authors":"Razieh Khayamim , Ren Moses , Eren E. Ozguven , Marta Borowska-Stefańska , Szymon Wiśniewski , Maxim A. Dulebenets","doi":"10.1016/j.swevo.2025.102009","DOIUrl":"10.1016/j.swevo.2025.102009","url":null,"abstract":"<div><div>In the era where natural and human-made disasters are escalating in frequency and impact, the need for advanced emergency evacuation strategies is more critical than ever. This study presents a comprehensive examination of swarm intelligence algorithms and their applications in emergency evacuation planning—a field that has become increasingly important due to the growing complexity and scale of evacuation challenges. We delve into the realm of swarm intelligence—a class of algorithms inspired by self-organized behaviors observed in nature, such as those in ant colonies, bee colonies, bird flocks, and fish schools. Focusing on specific algorithms, including particle swarm optimization (PSO), artificial bee colony (ABC), and ant colony optimization (ACO), this study discusses their applications in simulating and optimizing emergency evacuation scenarios under various constraints, interactions, and objectives. A systematic literature survey forms the backbone of this study, highlighting the diverse applications and innovations in swarm intelligence for emergency evacuation. The findings underscore the novel aspects of these algorithms, including customized objective functions, solution encodings, and effective hybridization techniques. Through case studies, the paper demonstrates the effectiveness of these techniques in critical aspects of emergency management, such as planning egress routes, locating shelters, and organizing disaster response operations. Moreover, the current limitations emphasizing the untapped potential of swarm intelligence in enhancing emergency evacuation operations are critically discussed. This survey concludes by offering a structured overview of the main findings revealed and proposing future research opportunities in applying swarm intelligence for more effective emergency evacuation planning in the following years.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 102009"},"PeriodicalIF":8.2,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144167259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}