{"title":"Comparative effects of micro vs. submicron emulsions on textural properties of myofibrillar protein composite gels","authors":"Jiseon Lee , Mi-Jung Choi , Youling L. Xiong","doi":"10.1016/j.foostr.2023.100353","DOIUrl":"https://doi.org/10.1016/j.foostr.2023.100353","url":null,"abstract":"<div><p>This study aimed to investigate the impact of emulsion particle size (micro vs. submicron) on the physicochemical and rheological properties of myofibrillar protein (MP) gels. MP-based oil-in-water micro-emulsions (∼2,091 nm) and submicron-emulsions (∼522 nm) were compared with each other and with lecithin-stabilized micro-emulsions (∼1,330 nm) and submicron-emulsions (∼543 nm). Emulsion particle size, ζ-potential, and morphological properties using transmission and confocal microscopies) were measured. Additionally, dynamic rheological behavior, mechanical strength, water-holding capacity (WHC), water mobility, and protein secondary structures of the emulsion gels containing 2.5% protein and 5% oil) were analyzed. The results showed that emulsion droplet size had no significant effect on gel strength and storage modulus, regardless of the surfactants used. However, the MP-coated submicron-emulsion exhibited a greater improvement in gel WHC (p < 0.05) compared to its micro-emulsion counterpart. Overall, emulsion gels displayed greater strength than oil-free control gels. MP-based emulsions proved more effective than lecithin-stabilized emulsions in modifying the gelling properties, primarily due to the formation of a visible interfacial protein film that prevented oil droplet aggregation. Based on these findings, protein-based emulsions were preferred over lecithin-based emulsions, with MP submicron-emulsions offering the advantage of enhanced moisture retention in cooked MP gels.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"38 ","pages":"Article 100353"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50204224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joana Martínez-Martí , Kristýna Panušková , Virginia Larrea , Roman Bleha , Amparo Quiles , Isabel Hernando
{"title":"Using different physical treatments to modify the structure and improve the technofunctional properties of clementine by-products","authors":"Joana Martínez-Martí , Kristýna Panušková , Virginia Larrea , Roman Bleha , Amparo Quiles , Isabel Hernando","doi":"10.1016/j.foostr.2023.100346","DOIUrl":"10.1016/j.foostr.2023.100346","url":null,"abstract":"<div><p>Clementine by-products are an important source of dietary fiber, which has different technofunctional properties depending on its chemical composition and structure. These properties can be modified through different treatments. In this work, the impact of treatments such as hot air drying (HAD), homogenization (HOM), freeze drying (FD), and extrusion (EXT) was evaluated on the structure and technofunctional properties of clementine by-products’ powders, to promote their use as ingredients in food development as a way of valorization. The structure of by-products was studied using microscopy (Light Microscopy and Field Emission Scanning Electron Microscopy) and vibrational spectroscopic (FTIR and FT-Raman) techniques. The technofunctional properties, water and oil holding capacities, water solubility, swelling capacity, and emulsifying capacity, as well as particle size were evaluated. HOM and EXT showed a more stratified and porous structure than HAD and FD. FTIR and FT-Raman showed that the by-products mainly comprised pectin and cellulose. Regarding technofunctional properties, HOM powders had high water retention and swelling capacities, and good emulsifying capacity even when using high amounts of oil in an emulsion (75 %). FD powders showed the highest oil retention capacity and EXT powders the highest water solubility.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"38 ","pages":"Article 100346"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48956674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniela Freitas , Laura G. Gómez-Mascaraque , Steven Le Feunteun , André Brodkorb
{"title":"Boiling vs. baking: Cooking-induced structural transformations drive differences in the in vitro starch digestion profiles that are consistent with the in vivo glycemic indexes of white and sweet potatoes","authors":"Daniela Freitas , Laura G. Gómez-Mascaraque , Steven Le Feunteun , André Brodkorb","doi":"10.1016/j.foostr.2023.100355","DOIUrl":"https://doi.org/10.1016/j.foostr.2023.100355","url":null,"abstract":"<div><p>White and sweet potatoes can elicit different blood glucose responses depending on whether they are boiled or baked. This work investigated how microstructure and starch digestion in vitro relate to these differences. The main methods were INFOGEST’s semi-dynamic digestion protocol, Scanning Electron Microscopy and Confocal Laser Scanning Microscopy. The cooking method impacted microstructure, thereby significantly influencing starch digestion. Boiling and baking led to similar types of microstructural changes, including cell expansion and separation and disruption to cell walls, with the differences lying on the magnitude of such changes. Hydrolysis of white potato starch into oligosaccharides during oro-gastric digestion stabilized at around 75% when boiled compared to 50% when baked. In sweet potato, hydrolysis during this stage represented 30% and 40% of the total starch after boiling or baking, respectively. Overall, the effect can be summarized as boiled white potato > baked white potato > baked sweet potato > boiled sweet potato. Our results show how structural transformations that occur during cooking can drive differences in starch release and hydrolysis during in vitro digestions. This work therefore provides a structural and biochemical basis to better understand the impact of boiling and baking on the glycemic responses to these foods.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"38 ","pages":"Article 100355"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91992729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prodromos Prodromidis, Costas G. Biliaderis, Eugenios Katsanidis, Thomas Moschakis
{"title":"Effect of Tween 20 on structure, phase-transition behavior and mechanical properties of monoglyceride oleogels","authors":"Prodromos Prodromidis, Costas G. Biliaderis, Eugenios Katsanidis, Thomas Moschakis","doi":"10.1016/j.foostr.2023.100345","DOIUrl":"10.1016/j.foostr.2023.100345","url":null,"abstract":"<div><p><span>The aim of this study was to investigate the impact of the addition of a non-gelling non-ionic surfactant, Tween 20 (Tw20), at varying weight ratios with monoglycerides, MGs (0 – 20 g Tw20 to 10 g of MGs as structurant /100 g olive oil) in the crystalline network of the MGs-based oleogels. Several analytical methods such as differential scanning calorimetry (DSC), confocal and polarized optical microscopy, rheometry, and </span>infrared spectroscopy<span><span> were employed for the characterization of the oleogel structures. The DSC and FT-IR provided evidence that Tween 20 affects the MGs network structure in the oleogels. With addition of Tween 20 the crystal size and the melting/crystallization temperatures of the MGs crystal polymorphs were altered, along with a strengthening of the oleogel structure. Moreover, the presence of Tween 20 in the MGs oleogels accelerated the transformation of the higher free energy crystal forms (α-crystals) to the more thermodynamically stable β-polymorph of the MGs. Apparently, an oil-in-oil emulsion gel is being formed with the MG crystalline entities acting as Pickering particles around the oil/Tween 20 droplets in the oleogel structure. These findings provide valuable information on the synergistic effect of a non-ionic surfactant on monoglyceride-based oleogels, which could be beneficial in constructing multi-component lipid-phases for potential </span>food or cosmetic applications.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"38 ","pages":"Article 100345"},"PeriodicalIF":4.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47302648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of pectin and glucose on the texture properties and microstructures of freeze-dried restructured fruits: Pectin-glucose sponge as a model","authors":"Shuhan Feng, Jinfeng Bi, Youchuan Ma, Jianyong Yi","doi":"10.1016/j.foostr.2023.100344","DOIUrl":"10.1016/j.foostr.2023.100344","url":null,"abstract":"<div><p>This study prepared a series of freeze-dried sponges with different pectin-glucose concentrations at two shelf temperatures (−20 °C and 60 °C) to simulate the specific roles of pectin and glucose in the microstructure and textural properties of freeze-dried restructured fruit products. Pectin polysaccharide is mainly responsible for the construction of scaffolds after freeze-drying. When the content of pectin is more than 1.5% pectin, the occurrence of structural collapse could be significantly inhibited. The small molecule glucose is mainly responsible for the mechanical strength of the sponges. When the glucose increases from 4% to 12%, the mechanical strength of the sponge systems rises from 400 to 1400 g. Sponges with higher pectin content (>3.0%) could prevent the structural shrinkage of systems with greater sugar content (12%) or higher shelf temperature (60 °C), suggesting a possibility to achieve shrink-free lyophilization at high shelf temperature by adding the content of pectin.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100344"},"PeriodicalIF":4.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45543276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fabio Valoppi , Johannes Schavikin , Petri Lassila , Ivo Laidmäe , Jyrki Heinämäki , Sami Hietala , Edward Haeggström , Ari Salmi
{"title":"Formation and characterization of oleogels obtained via direct dispersion of ultrasound-enhanced electrospun nanofibers and cold milling","authors":"Fabio Valoppi , Johannes Schavikin , Petri Lassila , Ivo Laidmäe , Jyrki Heinämäki , Sami Hietala , Edward Haeggström , Ari Salmi","doi":"10.1016/j.foostr.2023.100338","DOIUrl":"10.1016/j.foostr.2023.100338","url":null,"abstract":"<div><p>Oleogels are semi-solid lipid-based materials designed to replace solid and semi-solid fats in foods, cosmetics, and pharmaceuticals. A new method for oleogel preparation through nanofibers has opened new possibilities for polymers from synthetic and natural origins previously considered inadequate for oleogel preparation. However, the obtained oleogels were made from conventionally electrospun nanofibers, where the production process still has limitations or the oleogel preparation process required different steps, such as use of organic solvents and extensive drying steps. In this work, we present a new organic solvent-free method for preparing oleogels using nanofiber mats of polyethylene oxide obtained with an ultrasound-enhanced electrospinning (USES) device. After dispersing nanofibers in oil followed by a cold-milling process, we obtained oleogels at a concentration >10% nanofiber concentration in rapeseed, walnut, and flaxseed oils. All oleogels were composed of a jammed dispersion of nanofiber mat fragments that conferred the system a gel-like behavior with good thixotropic recovery. In general, oleogel rheological properties were affected by oil type and nanofiber concentration, even if all systems showed uniform plastic deformation at increasing strain amplitude. Our results show that the milling method here developed can be a useful approach for obtaining oleogels using nanofibers obtained with USES, without the need of high temperatures or fiber pretreatments.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100338"},"PeriodicalIF":4.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46335897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingyue Liu , Xiaonian Wu , Xiaoyan Wang , Yuling Jiang , Zhengyu Huang , Yong Fang , Qinlu Lin , Yongbo Ding
{"title":"Effect of amylose content and crystal type on the structure and digestibility of starch-fatty acid complex nanoparticle","authors":"Mingyue Liu , Xiaonian Wu , Xiaoyan Wang , Yuling Jiang , Zhengyu Huang , Yong Fang , Qinlu Lin , Yongbo Ding","doi":"10.1016/j.foostr.2023.100336","DOIUrl":"10.1016/j.foostr.2023.100336","url":null,"abstract":"<div><p><span>To understand how amylose<span><span><span> content and crystal type regulated the digestibility of starch–lipid complex nanoparticles, this study used waxy </span>corn </span>starch (WCS), normal corn starch (NCS) and high-amylose corn starch (HCS) with different amylose contents and NCS (A-type), potato starch (PtS, B-type) and pea starch (PS, C-type) with different crystal types to investigate the effects of amylose content and crystal type on the structure and digestibility of starch-lauric acid (LA) complex nanoparticles. A significant increase in complex index (CI), R</span></span><sub>1047/1022</sub>, relative crystallinity, and enthalpy of gelatinization (ΔH) was found in starch-LA complex nanoparticles with amylose contents increasing. The increases in resistant starch (RS) and slowly digestible starch (SDS) contents of WCS-LA complex nanoparticles, NCS-LA complex nanoparticles and HCS-LA complex nanoparticles were 29.33%, 40.29% and 93.90% compared to their respective controls. Furthermore, PtS-LA complex nanoparticles (PtS-LANPs) showed the highest increase in CI, R<sub>1047/1022</sub>, relative crystallinity, and ΔH compared to NCS-LA complex nanoparticles (NCS–LANPs) and PS-LA complex nanoparticles (PS-LANPs). For RS and SDS contents, the highest increased was found in PtS-LANPs (56.99%), followed by NCS–LANPs (40.29%) and PS-LANPs (31.44%) as compared to their respective controls. Results could provide basic data to prepare starch–lipid complex nanoparticles with desired digestibility.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100336"},"PeriodicalIF":4.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41498877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of healthier and industrially applicable oleogel with low saturated fatty acid content using a small amount of high-melting fat","authors":"Noritaka Oishi , Hiroki Umemoto , Ryo Sasaki , Haruhiko Koizumi , Satoru Ueno","doi":"10.1016/j.foostr.2023.100333","DOIUrl":"10.1016/j.foostr.2023.100333","url":null,"abstract":"<div><p>We aimed to develop a low-saturated fat oleogel with a small amount of high-melting fat and elucidate its gelation<span> mechanism. Fully hydrogenated rapeseed oil rich in behenic acid (FHR-B), fully hydrogenated rapeseed oil rich in stearic acid (FHR-S), fully hydrogenated fish oil extracted from sardines (FHF), fully hydrogenated beef tallow (FHBT), fully hydrogenated palm oil (FHP), and fully hydrogenated hard palm mid-fraction (FHHPMF) were used as oleogelators. The gelation ability, chemical composition, crystal morphology, polymorphism, and melting properties of the prepared samples were evaluated. FHR-B, FHF, FHP, and FHHPMF formed gels with 2 wt% or lower concentrations. High-melting fat with a high gelation ability formed fibrous crystals with a high aspect ratio, that is, whisker crystals, in canola oil. The crystal morphology was affected by the triacylglycerol composition. Moreover, high-temperature storage caused the separation of TAGs, affecting the crystal morphology. Hence, high-melting fats with complex TAG compositions showed different gelation behaviors depending on the storage temperature. We confirmed that FHHPMF exhibited exceptionally high gelation ability, forming a gel at only 0.5 wt%. Therefore, FHHPMF may be a suitable oleogelator for industrial use with a controllable saturated fatty acid content and waxy mouthfeel.</span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100333"},"PeriodicalIF":4.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41272062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sayed Amir Hossein Goli , Mohammad Rezvani, Maryam Abdollahi
{"title":"Beeswax and monoglycerol-based oil foam: Effect of oil type and oleogelator concentration on physicochemical, rheological properties and storage stability","authors":"Sayed Amir Hossein Goli , Mohammad Rezvani, Maryam Abdollahi","doi":"10.1016/j.foostr.2023.100343","DOIUrl":"10.1016/j.foostr.2023.100343","url":null,"abstract":"<div><p>Four oil types (coconut oil, rapeseed oil, sunflower oil, and flaxseed oil) and glycerol monostearate-beeswax mixture (GMS-BW; 1:1), as an oleogelator, at different concentrations (5%, 7.5%, 10%, and 12.5% w/w) were used to fabricate oil foam. Due to the higher overrun (∼38–45%) and foam stability (lower oil loss, 6–8%), intermediate firmness (∼0.55–0.60 N), and smaller bubble size (∼28 µm), sunflower oil foam (SOF) and flaxseed oil foam (FOF) containing 12.5% oleogelator were chosen for further experiments. X-ray diffraction revealed that oil type had no significant effect on polymorphism. Furthermore, FOF sample presented higher melting and crystallization enthalpy than SOF related to the stronger network confirmed by a higher G′ value (130,000 Pa) and yield stress (130 Pa) as well as its longer linear viscoelastic region (P < 0.05). Over storage time, overrun and oil loss of both samples decreased especially at room temperature, whereas firmness increased due to the further crystals’ interactions.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100343"},"PeriodicalIF":4.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42308848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization of coffee pulp for the production of sustainable cellulosic composite and plant-based hydrogel as a potential human wound dressing","authors":"Sarana Rose Sommano , Pensak Jantrawut , Jiraporn Sangta , Baramee Chanabodeechalermrung , Piyachat Sunanta , Cassie Bakshani , William Willats","doi":"10.1016/j.foostr.2023.100347","DOIUrl":"10.1016/j.foostr.2023.100347","url":null,"abstract":"<div><p><span>In this study, coffee pulp cellulose<span><span><span> (CPC) was recovered from the coffee pulp biomass generated during wet processing of Arabica coffee using the following sequential extractions. As for screening, the </span>Microarray Polymer Profiling (MAPP) was used to characterize the gylco The alcohol-insoluble fraction (AIF) was obtained from dried coffee pulp following by </span>dichloromethane and ethanol to remove fat-soluble components. Ammonium oxalate extraction yielded insoluble dietary fiber, and lignin was removed from the pectin-free fraction using hydrogen peroxide and </span></span>sodium<span><span> borohydride. The resulting coffee pulp cellulose (CPC) was obtained after drying. Pectin was not detected in the cellulose fraction, indicating that the extraction was only partially successful in purifying the soluble and non-soluble polysaccharides. Structural damage and the presence of lignin and </span>hemicellulose<span><span> were also observed in the cellulose, as evidenced by its shredded morphology and Fourier Transform Infrared spectra. Cellulosic coffee pulp-based hydrogels were fabricated with of CPC ranging from 0.25 to 1.00 g with alginate and pectin as hydrophilic polymers and cross-linked by </span>calcium chloride. The hydrogel with the lowest CPC concentration demonstrated a porous structure that allowed water molecules to diffuse into the material, causing it to swell or increase in size. The hydrogel with 0.38 g CPC had the highest maximum swelling degree (MSD), while incorporating CPC at 0.50 g resulted in the longest durability, as determined by the integrity value. The study found that all formulations of the hydrogel exhibited no toxicity towards HaCaT cells. This suggests the possibility of the industrial recovery of cellulose from underutilized materials, providing a sustainable solution to supply chain challenges.</span></span></p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"37 ","pages":"Article 100347"},"PeriodicalIF":4.7,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43573313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}