{"title":"Embedding Deep Neural Network in Enhanced Schapery Theory for Progressive Failure Analysis of Fiber Reinforced Laminates","authors":"Shiyao Lin, Alex Post, Anthony M Waas","doi":"10.1093/jcde/qwad103","DOIUrl":"https://doi.org/10.1093/jcde/qwad103","url":null,"abstract":"Abstract Computational progressive failure analysis (PFA) of carbon fiber reinforced polymer composites (CFRP) is of vital importance in the verification and validation process of the structural integrity and damage tolerance of modern lightweight aeronautical structures. Enhanced Schapery Theory (EST) has been developed and applied to predict the damage pattern and load-bearing capacity of various composite structures. In this paper, EST is enhanced by a deep neural network (DNN) model, which enables fast and accurate predictions of matrix cracking angles under arbitrary stress states of any composite laminate. The DNN model is trained by TensorFlow based on data generated by a damage initiation criterion, which originates from the Mohr-Coulomb failure theory. The EST-DNN model is applied to open-hole tension/compression (OHT/OHC) problems. The results from the EST-DNN model are obtained with no loss in accuracy. The results presented combine the efficient and accurate predicting capabilities brought by machine learning tools and the robustness and user-friendliness of the EST finite element model.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134992200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved semantic segmentation network using normal vector guidance for LiDAR point clouds","authors":"Minsung Kim, Inyoung Oh, Dongho Yun, Kwanghee Ko","doi":"10.1093/jcde/qwad102","DOIUrl":"https://doi.org/10.1093/jcde/qwad102","url":null,"abstract":"Abstract As LiDAR sensors become increasingly prevalent in the field of autonomous driving, the need for accurate semantic segmentation of 3D points grows accordingly. To address this challenge, we propose a novel network model that enhances segmentation performance by utilizing normal vector information. Firstly, we present a method to improve the accuracy of normal estimation by using the intensity and reflection angles of the light emitted from the LiDAR sensor. Secondly, we introduce a novel local feature aggregation module that integrates normal vector information into the network to improve the performance of local feature extraction. The normal information is closely related to the local structure of the shape of an object, which helps the network to associate unique features with corresponding objects. We propose four different structures for local feature aggregation, evaluate them, and choose the one that shows the best performance. Experiments using the SemanticKITTI dataset demonstrate that the proposed architecture outperforms both the baseline model, RandLA-Net, and other existing methods, achieving mean Intersection over Union (mIoU) of 57.9%. Furthermore, it shows highly competitive performance compared to RandLA-Net for small and dynamic objects in a real road environment. For example, it yielded 95.2% for cars, 47.4% for bicycles, 41.0% for motorcycles, 57.4% for bicycles, and 53.2% for pedestrians.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136351563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Data-driven integration framework for 4D BIM simulation in modular construction: A case study approach","authors":"Saddiq Ur Rehman, Inhan Kim, Jungsik Choi","doi":"10.1093/jcde/qwad100","DOIUrl":"https://doi.org/10.1093/jcde/qwad100","url":null,"abstract":"Abstract Modular construction is becoming more popular because of its efficiency, cost-saving, and environmental benefits, but its successful implementation necessitates detailed planning, scheduling, and coordination. BIM and 4D simulation techniques have emerged as invaluable tools for visualizing and analyzing the construction process in order to meet these requirements. However, integrating distinctive data sources and developing comprehensive 4D BIM simulations tailored to modular construction projects present significant challenges. Case studies are used in this paper to define precise data needs and to design a robust data integration framework for improving 4D BIM simulations in modular construction. The validation of the framework in a real-world project demonstrates its efficacy in integrating data, promoting cooperation, detecting risks, and supporting informed decision-making, ultimately enhancing modular building results through more realistic simulations. By solving data integration difficulties, this research provides useful insights for industry practitioners and researchers, enabling informed decision-making and optimization of modular building projects.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136351565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jisoo Ahn, Sewoong Jung, Hansom Kim, Ho-Jin Hwang, Hong-Bae Jun
{"title":"A study on UCV path planning for collision avoidance with enemy forces in dynamic situations","authors":"Jisoo Ahn, Sewoong Jung, Hansom Kim, Ho-Jin Hwang, Hong-Bae Jun","doi":"10.1093/jcde/qwad099","DOIUrl":"https://doi.org/10.1093/jcde/qwad099","url":null,"abstract":"Abstract This study focuses on the path planning problem for Unmanned Combat Vehicles (UCVs), where the goal is to find a viable path from the starting point to the destination while avoiding collisions with moving obstacles, such as enemy forces. The objective is to minimize the overall cost, which encompasses factors like travel distance, geographical difficulty, and the risk posed by enemy forces. To address this challenge, we have proposed a heuristic algorithm based on D* lite. This modified algorithm considers not only travel distance but also other military-relevant costs, such as travel difficulty and risk. It generates a path that navigates around both fixed unknown obstacles and dynamically moving obstacles (enemy forces) that change positions over time. To assess the effectiveness of our proposed algorithm, we conducted comprehensive experiments, comparing and analyzing its performance in terms of average pathfinding success rate, average number of turns, and average execution time. Notably, we examined how the algorithm performs under two UCV path search strategies and two obstacle movement strategies. Our findings shed light on the potential of our approach in real-world UCV path planning scenarios.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135291793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruba Abu Khurma, Esraa Alhenawi, Malik Braik, Fatma A Hashim, Amit Chhabra, Pedro A Castillo
{"title":"A Bio-Medical Snake Optimizer System Driven by Logarithmic Surviving Global Search for Optimizing Feature Selection and its application for Disorder Recognition","authors":"Ruba Abu Khurma, Esraa Alhenawi, Malik Braik, Fatma A Hashim, Amit Chhabra, Pedro A Castillo","doi":"10.1093/jcde/qwad101","DOIUrl":"https://doi.org/10.1093/jcde/qwad101","url":null,"abstract":"Abstract It is of paramount importance to enhance medical practices, given how important it is to protect human life. Medical therapy can be accelerated by automating patient prediction using machine learning techniques. To double the efficiency of classifiers, several preprocessing strategies must be adopted for their crucial duty in this field. Feature selection (FS) is one tool that has been used frequently to modify data and enhance classification outcomes by lowering the dimensionality of datasets. Excluded features are those that have a poor correlation coefficient with the label class, that is, they have no meaningful correlation with classification and do not indicate where the instance belongs. Along with the recurring features, which show a strong association with the remainder of the features. Contrarily, the model being produced during training is harmed, and the classifier is misled by their presence. This causes overfitting and increases algorithm complexity and processing time. The pattern is made clearer by FS, which also creates a broader classification model with a lower chance of overfitting in an acceptable amount of time and algorithmic complexity. To optimize the FS process, building wrappers must employ metaheuristic algorithms (MAs) as search algorithms. The best solution, which reflects the best subset of features within a particular medical dataset that aids in patient diagnosis, is sought in this study using the Snake Optimizer (SO). The swarm-based approaches that SO is founded on have left it with several general flaws, like local minimum trapping, early convergence, uneven exploration and exploitation, and early convergence. By employing the cosine function to calculate the separation between the present solution and the ideal solution, the logarithm operator was paired with SO to better the exploitation process and get over these restrictions. In order to get the best overall answer, this forces the solutions to spiral downward. Additionally, SO is employed to put the evolutionary algorithms’ preservation of the best premise into practice. This is accomplished by utilizing three alternative selection systems tournament, proportional, and linear to improve the exploration phase. These are used in exploration to allow solutions to be found more thoroughly and in relation to a chosen solution than at random. TLSO, PLSO, and LLSO stand for Tournament Logarithmic Snake Optimizer, Proportional Logarithmic Snake Optimizer, and Linear Order Logarithmic Snake Optimizer, respectively. A number of 22 reference medical datasets were used in experiments. The findings indicate that, among 86% of the datasets, TLSO attained the best accuracy, and among 82% of the datasets, the best feature reduction. In terms of the standard deviation, the TLSO also attained noteworthy reliability and stability. On the basis of running duration, it is, nonetheless, quite effective.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135292051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deterministic surface roughness effects on elastic material contact with shear thinning fluid media","authors":"Siyoul Jang","doi":"10.1093/jcde/qwad098","DOIUrl":"https://doi.org/10.1093/jcde/qwad098","url":null,"abstract":"Abstract The formation of lubrication films is described using the hydrodynamic lubrication theory, which is based on the Reynolds equation that includes shear thinning behaviors of lubricant. Contacting surfaces are considered to undergo elastic deformation owing to concentrated contact pressures that exceed 1.0 GPa in most engineering applications. Under the contact condition of a high load on a relatively small contact area, elastic deformation of contacting bodies directly influences the formation of the lubricated film. Elastohydrodynamic lubrication (EHL) analysis is applied to correctly analyze the lubricated contact. Under an EHL contact, the scale of the lubrication film thickness is frequently less than that of the surface roughness that results from either the manufacturing or running-in processes. In this work, surface roughness is considered in detail, and two-dimensional surface roughness is measured as that characterizing general engineering surface roughness. The deterministic method regarding the surface roughness is considered for computing EHL film formation under several contact conditions such as load, contact velocity, and elasticity of contacting materials.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135685416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyper-heuristic algorithm for traffic flow-based VRP with simultaneous delivery and pickup","authors":"Wang Zheng, Liu Jinlong, Zhang Jingling","doi":"10.1093/jcde/qwad097","DOIUrl":"https://doi.org/10.1093/jcde/qwad097","url":null,"abstract":"Abstract To address the realistic problem of seriously reducing distribution efficiency and increasing distribution cost caused by road traffic congestion, this paper constructs a time-dependent speed describing vehicle travel speed and road traffic flow by simulating the change of urban traffic flow, to establish a vehicle route problem model considering traffic flow with distribution cost and customer satisfaction as optimization objectives. To solve this problem, a hyper-heuristic algorithm based on Tabu search is designed in this paper, in which the underlying search operator is selected more efficiently by a high-level heuristic strategy. In addition, the correctness of the model and the effectiveness of the algorithm are verified by conducting simulation experiments on several benchmark sets. Experiment results are shown as the travel speed of the vehicle increases, the average customer satisfaction in lc1-type instances increases to 0.94. And the impact of urban traffic changes on logistics costs and customer satisfaction is further analyzed.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136232977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved Snow Ablation Optimizer with Heat Transfer and Condensation Strategy for Global Optimization Problem","authors":"Heming Jia, Fangkai You, Di Wu, Honghua Rao, Hangqu Wu, Laith Abualigah","doi":"10.1093/jcde/qwad096","DOIUrl":"https://doi.org/10.1093/jcde/qwad096","url":null,"abstract":"Abstract The Snow Ablation Optimizer (SAO) is a new metaheuristic algorithm proposed in April 2023. It simulates the phenomenon of snow sublimation and melting in nature and has a good optimization effect. The SAO proposes a new two-population mechanism. By introducing Brownian motion to simulate the random motion of gas molecules in space. However, as the temperature factor changes, most water molecules are converted into water vapor. Which breaks the balance between exploration and exploitation, and reduces the optimization ability of the algorithm in the later stage. Especially in the face of high-dimensional problems, it is easy to fall into local optimal. In order to improve the efficiency of the algorithm, this paper proposes an improved Snow Ablation Optimizer with Heat Transfer and Condensation Strategy(SAOHTC). Firstly, this article proposes a heat transfer strategy. Utilizes gas molecules to transfer heat from high to low temperatures and move their positions from low to high temperatures. Causing individuals with lower fitness in the population to move towards individuals with higher fitness, thereby improving the optimization efficiency of the original algorithm. Secondly, a condensation strategy is proposed. Which can transform water vapor into water by simulating condensation in nature, improve the deficiency of the original two-population mechanism. improve the convergence speed. Finally, to verify the performance of SAOHTC. In this paper, two benchmark experiments of IEEE CEC2014 and IEEE CEC2017 and five engineering problems are used to test the superior performance of SAOHTC.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136376322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improve Coati Optimization Algorithm for Solving Constrained Engineering Optimization Problems","authors":"Heming Jia, Shengzhao Shi, Di Wu, Honghua Rao, Jinrui Zhang, Laith Abualigah","doi":"10.1093/jcde/qwad095","DOIUrl":"https://doi.org/10.1093/jcde/qwad095","url":null,"abstract":"Abstract The coati optimization algorithm (COA) is a meta-heuristic optimization algorithm proposed in 2022. It creates mathematical models according to the habits and social behaviors of coatis: (1) In the group organization of the coatis, half of the coatis climb trees to chase their prey away, while the other half waits beneath to catch it; (2) Coatis avoidance predators behavior. Which gives the algorithm strong global exploration ability. However, over the course of our experiment, we uncovered opportunities for enhancing the algorithm's performance. When confronted with intricate optimization problems, certain limitations surfaced. Much like a long-nosed raccoon gradually narrowing its search range as it approaches the optimal solution, COA algorithm exhibited tendencies that could result in reduced convergence speed and the risk of becoming trapped in local optima. In this paper, we propose an improved coatis optimization algorithm (ICOA) to enhance the algorithm's efficiency. Through a sound-based search envelopment strategy, coatis can capture prey more quickly and accurately, allowing the algorithm to converge more rapidly. By employing a physical exertion strategy, coatis can have a greater variety of escape options when being chased, thereby enhancing the algorithm's exploratory capabilities and the ability to escape local optima. Finally, the lens opposition-based learning strategy is added to improve the algorithm's global performance. To validate the performance of the ICOA, we conducted tests using the IEEE CEC2014 and IEEE CEC2017 benchmark functions, as well as six engineering problems.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jie Xing, Qinqin Zhao, Huiling Cheny, Yili Zhang, Feng Zhou, Hanli Zhao
{"title":"Utilizing Bee Foraging Behavior in Mutational Salp Swarm for Feature Selection: A Study on Return Intentions of Overseas Chinese after COVID-19","authors":"Jie Xing, Qinqin Zhao, Huiling Cheny, Yili Zhang, Feng Zhou, Hanli Zhao","doi":"10.1093/jcde/qwad092","DOIUrl":"https://doi.org/10.1093/jcde/qwad092","url":null,"abstract":"Abstract We present a Bee Foraging Behavior Driven Mutational Salp Swarm Algorithm (BMSSA) based on an improved bee foraging strategy and an unscented mutation strategy. The improved bee foraging strategy is leveraged in the follower location update phase to break the fixed range search of SSA, while the unscented mutation strategy on the optimal solution is employed to enhance the quality of the optimal solution. Extensive experimental results on public CEC 2014 benchmark functions validate that the proposed BMSSA performs better than nine well-known metaheuristic methods and seven state-of-the-art algorithms. The Binary BMSSA algorithm is further proposed for feature selection by using BMSSA as the selection strategy and support vector machine as the classifier. Experimental comparisons on twelve UCI datasets demonstrate the superiority of binary BMSSA. Finally, we collected a dataset on the return-intentions of overseas Chinese after COVID-19 through an anonymous online questionnaire and performed a case study by setting up a binary BMSSA-based feature selection optimization model. . The case study shows that the development prospects, the family and job in the place of residence, seeking opportunities in China, and the possible time to return to China are critical factors influencing the willingness to return to China after COVID-19.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135779843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}