N. S. Kwong, K. Jaiswal, J. Baker, N. Luco, K. Ludwig, Vasey J. Stephens
{"title":"Earthquake Risk of Gas Pipelines in the Conterminous United States and Its Sources of Uncertainty","authors":"N. S. Kwong, K. Jaiswal, J. Baker, N. Luco, K. Ludwig, Vasey J. Stephens","doi":"10.1061/ajrua6.0001202","DOIUrl":"https://doi.org/10.1061/ajrua6.0001202","url":null,"abstract":"Relatively little research has been conducted to systematically quantify the nationwide earthquake risk of gas pipelines in the United States; simultaneously, national guidance is limited for operators across the country to consistently evaluate earthquake risk of their assets. Furthermore, many challenges and uncertainties exist in a comprehensive seismic risk assessment of gas pipelines. As a first stage in a systematic nationwide assessment, we quantify the earthquake risk of gas transmission pipelines in the conterminous United States due to strong ground shaking, including the associated uncertainties. Specifically, we integrate the U.S. Geological Survey 2018 National Seismic Hazard Model, a logic tree-based exposure model, three different vulnerability models, and a consequence model. The results enable comparison against other risk assessment efforts, encourage more transparent deliberation regarding alternative approaches, and facilitate decisions on potentially assessing localized risks due to ground failures that require site-specific data. Based on the uncertainties approximated herein, the resulting sensitivity analyses suggest that the vulnerability model is the most influential source of uncertainty. Finally, we highlight research needs such as (i) developing more vulnerability models for regional seismic risk assessment of gas pipelines, (ii) identifying, prioritizing, and measuring input pipeline attributes that are important for estimating seismic damage, and (iii) better quantifying seismic hazards with their uncertainties at the national scale, for both ground failures and ground shaking.","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78991178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation-Based Environmental Risk Analysis of Mixed Traffic Flow at Intersections","authors":"Weiwei He, Liang Wang, Cheng Xu","doi":"10.1061/ajrua6.0001264","DOIUrl":"https://doi.org/10.1061/ajrua6.0001264","url":null,"abstract":"","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78109293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taoran Song, Hao Pu, P. Schonfeld, Jianping Hu, Jiangtao Liu
{"title":"Robust Optimization Method for Mountain Railway Alignments Considering Preference Uncertainty for Costs and Seismic Risks","authors":"Taoran Song, Hao Pu, P. Schonfeld, Jianping Hu, Jiangtao Liu","doi":"10.1061/ajrua6.0001207","DOIUrl":"https://doi.org/10.1061/ajrua6.0001207","url":null,"abstract":"","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85078863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Probabilistic Optimum Bridge System Maintenance Management Considering Correlations of Deteriorating Components and Service Life Extensions","authors":"Sunyong Kim, Baixue Ge, D. Frangopol","doi":"10.1061/ajrua6.0001235","DOIUrl":"https://doi.org/10.1061/ajrua6.0001235","url":null,"abstract":"","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76601255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modified Best-Selection Method for Bridge Live-Load Model Development","authors":"Sasan Siavashi, C. Eamon","doi":"10.1061/ajrua6.0001248","DOIUrl":"https://doi.org/10.1061/ajrua6.0001248","url":null,"abstract":"","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91082491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Adaptive Monte Carlo Simulation Method and Its Applications to Reliability Analysis of Series Systems with a Large Number of Components","authors":"Xin Liu, Z. Cao, Dian-Qing Li, Yu Wang","doi":"10.1061/ajrua6.0001200","DOIUrl":"https://doi.org/10.1061/ajrua6.0001200","url":null,"abstract":"","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78999209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reliability-Based Structural Design of Retaining Walls Supporting Spatially Variable Soils","authors":"Batoul Tarhini, Ahmad Kahiel, S. Najjar, S. Sadek","doi":"10.1061/ajrua6.0001240","DOIUrl":"https://doi.org/10.1061/ajrua6.0001240","url":null,"abstract":"design of retaining walls is affected by spatial variability in the properties of the retained backfill and the foundation soil. In practice, the conventional approach for designing retaining walls is deterministic in nature and is based on ensuring acceptable design factors of safety for different limit states of wall failure. The only exception is the design method that is available in Eurocode 7, where partial load and resistance factors have been recommended to ensure a target level of safety in the design. Although these codes are considered to include the uncertainties in the design load and capacity, the recommended partial safety factors may not realistically incorporate the impact of spatial variability in the properties of the supported backfill and foundation soil on the design, since the calibration studies that were conducted to determine the safety factors were not based on realistic random field modeling of the soils involved. In addition, existing reliability-based design approaches for retaining walls focus on the failure in the soil and do not include design aspects of the structural behavior of the wall. The main objective of this thesis is to quantify the level of risk associated with the design of a cantilever retaining wall using the conventional deterministic design approaches and approaches that are based on partial factors of safety (ex. Eurocode 7). The objective will be attained by utilizing random fields that represent the variability in the backfill and foundation soils in the finite difference software FLAC 2D ® . The effect of the properties of the random field on the design of the retaining wall will then be investigated to provide recommendations that would aid the design of cantilever walls supporting cohesionless backfill.","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79093105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multihazard Risk Model for Reliability Analysis of Expansive Soil Landslide Based on T–S Fuzzy Logic","authors":"J. Lu, L. Kong, Xinyu Liu, Gang Wang","doi":"10.1061/ajrua6.0001225","DOIUrl":"https://doi.org/10.1061/ajrua6.0001225","url":null,"abstract":"","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77953582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Managing Cost Risks in Oil and Gas Construction Projects: Root Causes of Cost Overruns","authors":"I. Esmaeili, H. Kashani","doi":"10.1061/ajrua6.0001193","DOIUrl":"https://doi.org/10.1061/ajrua6.0001193","url":null,"abstract":"AbstractThis study identifies and classifies the root causes (i.e., the primary precursors) of cost overruns in oil and gas construction projects. Past studies generally focused on identifying the ...","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83300732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Failure Probability of an Optimally Designed Gravity Retaining Wall","authors":"R. Varga, P. Jelušič","doi":"10.1061/ajrua6.0001223","DOIUrl":"https://doi.org/10.1061/ajrua6.0001223","url":null,"abstract":"","PeriodicalId":48571,"journal":{"name":"Asce-Asme Journal of Risk and Uncertainty in Engineering Systems Part A-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.5,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91148301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}