International Journal of Smart and Nano Materials最新文献

筛选
英文 中文
All-solid-state carbon-nanotube-fiber-based finger-muscle and robotic gripper 全固态碳纳米管纤维为基础的手指肌肉和机器人抓手
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2022-01-02 DOI: 10.1080/19475411.2022.2028928
Xia Liu, Hua Ji, Boyan Liu, Qingsheng Yang
{"title":"All-solid-state carbon-nanotube-fiber-based finger-muscle and robotic gripper","authors":"Xia Liu, Hua Ji, Boyan Liu, Qingsheng Yang","doi":"10.1080/19475411.2022.2028928","DOIUrl":"https://doi.org/10.1080/19475411.2022.2028928","url":null,"abstract":"ABSTRACT Carbon nanotube fibers (CNTFs) have many desirable properties such as lightweight, high strength, high conductivity, and long lifetimes. Coiled CNTF is an ideal material for preparing electrochemically driven artificial muscles. While previous studies focused mainly on the actuation performance of artificial muscles made of CNTF, this study focuses on an actuator that mimics human finger movements (flexion). More specifically, the preparation of CNTF muscles were optimized by twisting with weight. Then, actuators are designed and assembled by combining all-solid-state CNTF muscles with polypropylene (PP) sheets. Moreover, a dual-electrode system, which is infiltrated by a gel electrolyte, is built into the muscle actuator. In addition, a robotic gripper is fabricated, which uses these actuators. This study can help improve the design of CNTF-based muscle-actuators and future applications in robotics. GRAPHICAL ABSTRACT","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44165501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Design and performance study of a segmented intelligent isolation bearing 分段智能隔震轴承的设计与性能研究
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-10-02 DOI: 10.1080/19475411.2021.2004257
G. Yu, Xiaoyun Wen, C. Du, Ling-Yun Wang, Shao-Jie Zhu
{"title":"Design and performance study of a segmented intelligent isolation bearing","authors":"G. Yu, Xiaoyun Wen, C. Du, Ling-Yun Wang, Shao-Jie Zhu","doi":"10.1080/19475411.2021.2004257","DOIUrl":"https://doi.org/10.1080/19475411.2021.2004257","url":null,"abstract":"ABSTRACT In this paper, a novel type of isolator, named segmented intelligent isolation bearing (SIIB), is designed and manufactured, which can meet the requirements of seismic fortification under three seismic intensities, i.e. frequent intensity, basic intensity, and rare intensity. A theoretical formula for the output of the SIIB is established to provide a basis for the determination of the size of the SIIB. MRE and STMP used in SIIB were prepared, of which the changes of shear storage modulus and damping factor with the magnetic field under different strain are analyzed. The mechanical properties of the SIIB under small displacement, medium displacement, and large displacement are tested, respectively, and the hysteretic characteristics of force–displacement are analyzed. The dynamic mechanical model combining the rheological model, phenomenological model, and bilinear restoring force model is established to represent the behavior of the SIIB. The results showed that the theoretical results agree well with the experimental results, and the model can significantly reflect the dynamic characteristics of SIIB. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44343036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design of 4D printed shape-changing tracheal stent and remote controlling actuation 4D打印可变形气管支架的设计及遥控驱动
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-10-02 DOI: 10.1080/19475411.2021.1974972
Fenghua Zhang, Nan Wen, Linlin Wang, Yunqi Bai, J. Leng
{"title":"Design of 4D printed shape-changing tracheal stent and remote controlling actuation","authors":"Fenghua Zhang, Nan Wen, Linlin Wang, Yunqi Bai, J. Leng","doi":"10.1080/19475411.2021.1974972","DOIUrl":"https://doi.org/10.1080/19475411.2021.1974972","url":null,"abstract":"ABSTRACT As a kind of medical treatment device, shape memory tracheal stent has a good application prospect. The biodegradable stent can effectively reduce the damage to patients and improve the therapeutic performance of stents. In this work, a series of shape memory polylactic acid (Fe3O4) composite tracheal stents were manufactured by 4D printing. The composite tracheal stents with different structures were designed. Moreover, with the addition of magnetic particles Fe3O4, the shape memory PLA/Fe3O4 composite tracheal stent has a magnetic driving effect. Under the magnetic field, the shape recovery process is completed within 40 s, and the shape recovery rate is more than 99%. Moreover, the 4D printed tracheal stent was also triggered by the irradiation of infrared lamp to realize the remote controlling recovery. The research on the structure design and driving method of 4D printing tracheal stent expands the application scope of shape memory polymer composites in biomedical field, provides a new way for personalized implantable medical devices and minimally invasive surgery. It is of great significance for better precision medical treatment. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42896387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
Amino-functionalized magnetic nanoparticles for CO2 capture 用于CO2捕获的氨基功能化磁性纳米颗粒
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-10-02 DOI: 10.1080/19475411.2021.1987350
Emanuele Oddo, Ruggiero Pesce, M. Derudi, L. Magagnin
{"title":"Amino-functionalized magnetic nanoparticles for CO2 capture","authors":"Emanuele Oddo, Ruggiero Pesce, M. Derudi, L. Magagnin","doi":"10.1080/19475411.2021.1987350","DOIUrl":"https://doi.org/10.1080/19475411.2021.1987350","url":null,"abstract":"ABSTRACT CO2 accumulation is inducing an effect of global warming. Adsorption using solid sorbents is proving as an effective strategy for CO2 capture and reuse. The aim of this study was to develop amino-functionalized magnetic nanoparticles by depositing various amines through co-precipitation or impregnation-sonication. Structural characteristics were studied through SEM, BET and XRD analyses, evidencing coarse particles with low crystallinity and surface areas of 100–150 m2 g−1, while FT-IR confirmed CO2 interacting with substrate. The load of functional group, particles stability, and CO2 sorption capacity were assessed through elemental and thermogravimetric analysis. It was found that loads of functional groups ranging from 1.6 to 6.1 wt.%. were deposited, and most samples showed sound stability up to 100°C. Sorption capacities were in the range 0.2–1.5 g gNH2 −1, the highest being 1.46 g gNH2 −1 for ɛ-aminocaproic acid. Such sample also exhibited good recyclability, with a performance drop of 11% after many cycles. CO2 uptake decreased with increasing temperature in the range 25–45°C, suggesting a chemical bond between CO2 and amines. Amino functionalized particles could thus be an interesting solution for CO2 capture and utilization thanks to fast kinetics, recyclability, and ease of separation. Graphical Abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49566241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Nonlinear characterization of magnetorheological elastomer-based smart device for structural seismic mitigation 基于磁流变弹性体的结构抗震智能装置的非线性特性
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-09-28 DOI: 10.1080/19475411.2021.1981477
Yang Yu, A. N. Hoshyar, Huan Li, Guang Zhang, Weiqiang Wang
{"title":"Nonlinear characterization of magnetorheological elastomer-based smart device for structural seismic mitigation","authors":"Yang Yu, A. N. Hoshyar, Huan Li, Guang Zhang, Weiqiang Wang","doi":"10.1080/19475411.2021.1981477","DOIUrl":"https://doi.org/10.1080/19475411.2021.1981477","url":null,"abstract":"ABSTRACT Magnetorheological elastomer (MRE) has been demonstrated to be effective in structural vibration control because of controllable stiffness and damping properties with the effect of external magnetic fields. To achieve a high performance of MRE device-based vibration control, a robust and accurate model is necessary to describe nonlinear dynamics of MRE device. This article aims at realising this target via nonlinear modeling of an innovative MRE device, i.e. MRE vibration isolator. First, the field-dependent properties of MRE isolator were analysed based on experimental data of the isolator in various dynamic tests. Then, a phenomenal model was developed to account for these unique characteristics of MRE-based device. Moreover, an improved PSO algorithm was designed to estimate model parameters. Based on identification results, a generalised model was proposed to clarify the field-dependent properties of the isolator due to varied currents, which was then validated by random and earthquake-excited test data. Based on the proposed model, a frequency control strategy was designed for semi-active control of MRE devices-incorporated smart structure for vibration suppression. Finally, using a three-storey frame model and four benchmark earthquakes, a numerical study was conducted to validate the performance of control strategy based on the generalised current-dependent model with satisfactory results. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43592272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Design, manufacture and crushing behaviors of buckling-inspired auxetic meta-lattice structures 受屈曲启发的亚晶格结构的设计、制造和压碎行为
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-08-24 DOI: 10.1080/19475411.2021.1966855
J. Dong, Gaoyuan Ye, Yongjun Wang, F. Jin, Hualin Fan
{"title":"Design, manufacture and crushing behaviors of buckling-inspired auxetic meta-lattice structures","authors":"J. Dong, Gaoyuan Ye, Yongjun Wang, F. Jin, Hualin Fan","doi":"10.1080/19475411.2021.1966855","DOIUrl":"https://doi.org/10.1080/19475411.2021.1966855","url":null,"abstract":"ABSTRACT Introducing buckling pattern into straight-walled lattice structure, anovel buckling inspired lattice meta-structure (BILM) was designed and fabricated using polylactic acid (PLA) by three-dimensional (3D) printing technology. The square lattice structure with positive Poisson’s ratio (PPR) is transformed into negative Poisson’s ratio (NPR) structure by buckling induction. Curved struts decrease the maximum strain, prohibit strut fracture, increase strut contact and induce ductile bending deformation. The meta-topology changes the crushing pattern from brittle layer-by-layer fracture, hybrid crushing pattern to stable plastic crushing when increasing the central angle from 0° to 120°. Buckling inspired meta-lattice structures can obviously improve the energy absorption (EA) performance through reducing the initial peak force (IPF) while increasing the EA, specific energy absorption (SEA) and crushing force efficiency (CFE). Ductile crushing endows BILM excellent EA.","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45708984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Dynamic analysis and active control of hard-magnetic soft materials 硬磁软材料的动力学分析与主动控制
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-08-17 DOI: 10.1080/19475411.2021.1961909
Zhencai Xing, Hu Yong
{"title":"Dynamic analysis and active control of hard-magnetic soft materials","authors":"Zhencai Xing, Hu Yong","doi":"10.1080/19475411.2021.1961909","DOIUrl":"https://doi.org/10.1080/19475411.2021.1961909","url":null,"abstract":"ABSTRACT The hard-magnetic soft materials which can sustain high residual magnetic flux density gradually attract the attention of researchers because of potential applications in soft robotics and biomedical fields. In this work, we focus on the dynamic response of hard-magnetic soft materials. The dynamic motion equations are derived by the Euler-Lagrange equation. The effects of the aspect radio on the nonlinear vibration of the hard-magnetic soft cuboid under the force and applied magnetic fields in different directions are investigated. The amplitude-frequency curves demonstrate that the aspect ratio also has an influence on the frequency and amplitude of the primary resonance. Moreover, to eliminate undesired vibration responses, the PID controller is applied to the vibration of the hard-magnetic soft materials, and the desired results can be obtained. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41609780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Thermally controlled large deformation in temperature-sensitive hydrogels bilayers 温敏水凝胶双层中的热控大变形
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-07-28 DOI: 10.1080/19475411.2021.1958091
Jianying Hu, Nan Jiang, Jianke Du
{"title":"Thermally controlled large deformation in temperature-sensitive hydrogels bilayers","authors":"Jianying Hu, Nan Jiang, Jianke Du","doi":"10.1080/19475411.2021.1958091","DOIUrl":"https://doi.org/10.1080/19475411.2021.1958091","url":null,"abstract":"ABSTRACT The present work investigates the thermally controlled deformation characteristics in temperature-sensitive hydrogels bilayers. The free energy density for temperature-sensitive hydrogels is modified, upon which the finite element model is developed and implemented through user-defined material subroutine UHYPER in the commercial software ABAQUS. The modified UHYPER implementation allows for more vividly depicting the continuous deformation in phase temperature region for temperature-sensitive hydrogels. Several thermally controlled cases of temperature-sensitive hydrogel including grippers, self-folding boxes, thermally driven origami are presented to illustrate a wide array of complex interesting applications or phenomena. Furthermore, we develop a simple model to theoretically calculate the bending angle of the temperature-sensitive hydrogel bilayers, which has been validated by the finite element simulation results. Our study can provide more insights for optimal design in thermally controlled hydrogels structures. Graphical abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19475411.2021.1958091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45557456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method 基于水凝胶弹性体的可拉伸应变传感器的简单投影光刻制备
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-07-03 DOI: 10.1080/19475411.2021.1952335
Zhenqing Li, Xiangnan He, Jianxiang Cheng, Honggeng Li, Yuan-Fang Zhang, Xiaojuan Shi, Kai Yu, H. Yang, Qiuxuan Ge
{"title":"Hydrogel-elastomer-based stretchable strain sensor fabricated by a simple projection lithography method","authors":"Zhenqing Li, Xiangnan He, Jianxiang Cheng, Honggeng Li, Yuan-Fang Zhang, Xiaojuan Shi, Kai Yu, H. Yang, Qiuxuan Ge","doi":"10.1080/19475411.2021.1952335","DOIUrl":"https://doi.org/10.1080/19475411.2021.1952335","url":null,"abstract":"ABSTRACT Stretchable strain sensor detects a wide range of strain variation and is therefore a key component in various applications. Unlike traditional ones made of elastomers doped with conductive components or fabricated with liquid conductors, ionically conductive hydrogel-based strain sensors remain conductive under large deformations and are biocompatible. However, dehydration is a challenging issue for the latter. Researchers have developed hydrogel-elastomer-based strain sensors where an elastomer matrix encapsulates a hydrogel circuit to prevent its dehydration. However, the reported multi-step approaches are generally time-consuming. Our group recently reported a multimaterial 3D printing approach that enables fast fabrication of such sensors, yet requires a self-built digital-light-processing-based multimaterial 3D printer. Here, we report a simple projection lithography method to fabricate hydrogel-elastomer-based stretchable strain sensors within 5 minutes. This method only requires a UV projector/lamp with photomasks; the chemicals are commercially available; the protocols for preparing the polymer precursors are friendly to users without chemistry background. Moreover, the manufacturing flexibility allows users to readily pattern the sensor circuit and attach the sensor to a 3D printed soft pneumatic actuator to enable strain sensing on the latter. The proposed approach paves a simple and versatile way to fabricate hydrogel-elastomer-based stretchable strain sensors and flexible electronic devices. Graphical Abstract","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19475411.2021.1952335","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46256075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
A hygro-thermo-mechanical constitutive model for shape memory polymers filled with nano-carbon powder 纳米碳粉填充形状记忆聚合物的湿热力学本构模型
IF 3.9 3区 材料科学
International Journal of Smart and Nano Materials Pub Date : 2021-07-03 DOI: 10.1080/19475411.2021.1958089
Jianping Gu, Xiaopeng Zhang, Hao Duan, Mengqi Wan, Huiyu Sun
{"title":"A hygro-thermo-mechanical constitutive model for shape memory polymers filled with nano-carbon powder","authors":"Jianping Gu, Xiaopeng Zhang, Hao Duan, Mengqi Wan, Huiyu Sun","doi":"10.1080/19475411.2021.1958089","DOIUrl":"https://doi.org/10.1080/19475411.2021.1958089","url":null,"abstract":"ABSTRACT The nano-carbon powders are often used as fillers to endow the shape memory polymers (SMPs) with electroconductivity. It has been found that the shape memory effects (SMEs) of SMPs filled with nano-carbon powder can be triggered both by temperature and by water. To reveal the driving mechanism of SMEs, a constitutive model for describing the thermally activated and moisture activated SMEs of these shape memory polymer composite (SMPCs) is developed here. Because both of the SMEs share the same driving mechanism, the variable moisture is incorporated into the framework of a thermo-mechanical modeling approach to disclose the effect of moisture on the thermoviscoelastic properties. The SMPCs are regarded as isotropic materials and the effect of carbon powder on the mechanical properties of the matrix is also considered in the paper. Because the complete recovery may not be reached even they are exposed to the stimulus environment long enough, the blocking mechanism is also considered here. This is the mainly new contribution compared to the early work. Using the method of parameter determination presented here, the effectiveness of the proposed hygro-thermo-mechanical constitutive model is confirmed by comparing the model results with the test data of uniaxial deformation from the literature. GRAPHICAL ABSTRACT","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42325234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信