ANALYSIS最新文献

筛选
英文 中文
Iterative approximation of common solution of variational inequality and certain optimization problems with multiple output sets in Hadamard space 哈达玛德空间中变分不等式和具有多个输出集的某些优化问题的普通解的迭代逼近
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2022-1075
H. Abass, O. Oyewole, Olayinka Martins Onifade, O. Narain
{"title":"Iterative approximation of common solution of variational inequality and certain optimization problems with multiple output sets in Hadamard space","authors":"H. Abass, O. Oyewole, Olayinka Martins Onifade, O. Narain","doi":"10.1515/anly-2022-1075","DOIUrl":"https://doi.org/10.1515/anly-2022-1075","url":null,"abstract":"Abstract In this paper, our main interest is to propose a viscosity iterative method for approximating solutions of variational inequality problems, resolvents of monotone operators and fixed points of ρ-demimetric mappings with multiple output sets in Hadamard spaces. We prove a strong convergence result for approximating the solutions of the aforementioned problems under some mild conditions. Also, we present an application of our main result to a convex minimization problem. Our results improve and generalize many related results in the literature.","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"47 5","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139113456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some properties of Ψ-gamma, Ψ-beta and Ψ-hypergeometric matrix functions Ψ-伽马、Ψ-贝塔和Ψ-超几何矩阵函数的一些性质
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2023-0068
Ashish Verma, K. Yadav, Bhagwat Sharan, D.L. Suthar
{"title":"Some properties of Ψ-gamma, Ψ-beta and Ψ-hypergeometric matrix functions","authors":"Ashish Verma, K. Yadav, Bhagwat Sharan, D.L. Suthar","doi":"10.1515/anly-2023-0068","DOIUrl":"https://doi.org/10.1515/anly-2023-0068","url":null,"abstract":"Abstract In this paper, we investigate the matrix analogues of the Ψ-beta and Ψ-gamma functions, as well as their properties. With the help of the Ψ-beta matrix function (BMF), we introduce the Ψ-Gauss hypergeometric matrix function (GHMF) and the Ψ-Kummer hypergeometric matrix function (KHMF) and derive certain properties for these matrix functions. Finally, the Ψ-Appell and the Ψ-Lauricella matrix functions are defined by applications of the Ψ-BMF, and their integral representations are also given.","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"39 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139114219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some properties of Ψ-gamma, Ψ-beta and Ψ-hypergeometric matrix functions Ψ-伽马、Ψ-贝塔和Ψ-超几何矩阵函数的一些性质
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2023-0068
Ashish Verma, K. Yadav, Bhagwat Sharan, D.L. Suthar
{"title":"Some properties of Ψ-gamma, Ψ-beta and Ψ-hypergeometric matrix functions","authors":"Ashish Verma, K. Yadav, Bhagwat Sharan, D.L. Suthar","doi":"10.1515/anly-2023-0068","DOIUrl":"https://doi.org/10.1515/anly-2023-0068","url":null,"abstract":"Abstract In this paper, we investigate the matrix analogues of the Ψ-beta and Ψ-gamma functions, as well as their properties. With the help of the Ψ-beta matrix function (BMF), we introduce the Ψ-Gauss hypergeometric matrix function (GHMF) and the Ψ-Kummer hypergeometric matrix function (KHMF) and derive certain properties for these matrix functions. Finally, the Ψ-Appell and the Ψ-Lauricella matrix functions are defined by applications of the Ψ-BMF, and their integral representations are also given.","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"39 7","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139114535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform 与 (κ,n)-Fourier 变换相关的 Titchmarsh 和 Boas 型定理
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2023-0045
Mehrez Mannai, S. Negzaoui
{"title":"Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform","authors":"Mehrez Mannai, S. Negzaoui","doi":"10.1515/anly-2023-0045","DOIUrl":"https://doi.org/10.1515/anly-2023-0045","url":null,"abstract":"Abstract The aim of this paper is to prove a generalization of Titchmarsh’s theorems for the generalized Fourier transform called ( κ , n {kappa,n} )-Fourier transform, where n is a positive integer and κ is a constant coming from Dunkl theory. As an application, we derive a ( κ , n ) {(kappa,n)} -Fourier multiplier theorem for L 2 {L^{2}} Lipschitz spaces. Moreover, we give necessary conditions to ensure that f belongs to either one of the generalized Lipschitz classes of order m. This allows us to establish the analogue of the Boas-type result for ℱ κ , n {mathcal{F}_{kappa,n}} .","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"39 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139114536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform 与 (κ,n)-Fourier 变换有关的 Titchmarsh 和 Boas 型定理
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2023-0045
Mehrez Mannai, S. Negzaoui
{"title":"Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform","authors":"Mehrez Mannai, S. Negzaoui","doi":"10.1515/anly-2023-0045","DOIUrl":"https://doi.org/10.1515/anly-2023-0045","url":null,"abstract":"Abstract The aim of this paper is to prove a generalization of Titchmarsh’s theorems for the generalized Fourier transform called ( κ , n {kappa,n} )-Fourier transform, where n is a positive integer and κ is a constant coming from Dunkl theory. As an application, we derive a ( κ , n ) {(kappa,n)} -Fourier multiplier theorem for L 2 {L^{2}} Lipschitz spaces. Moreover, we give necessary conditions to ensure that f belongs to either one of the generalized Lipschitz classes of order m. This allows us to establish the analogue of the Boas-type result for ℱ κ , n {mathcal{F}_{kappa,n}} .","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"39 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139114626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of lacunary ℐ-convergent sequences in credibility space 可信空间中裂隙ℐ-收敛序列的特征
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2023-0084
Mousami Das, Ömer Kişi, B. Tripathy, Birojit Das
{"title":"Characterization of lacunary ℐ-convergent sequences in credibility space","authors":"Mousami Das, Ömer Kişi, B. Tripathy, Birojit Das","doi":"10.1515/anly-2023-0084","DOIUrl":"https://doi.org/10.1515/anly-2023-0084","url":null,"abstract":"Abstract This research paper aims to introduce the concept of lacunary ideal Cauchy sequences of fuzzy variables in a credibility space. We establish the interrelationships between this notion with lacunary ideal convergent sequences in the same structure from several aspects of credibility. Furthermore, we explore the concepts of strongly lacunary Cauchy, strongly ℐ {mathcal{I}} -lacunary Cauchy, and strongly ℐ ∗ {mathcal{I}^{ast}} -lacunary Cauchy sequences of fuzzy variables within the context of credibility. We also examine the interconnections between these concepts and analyze their relationships.","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"27 3","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139114728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Iterative approximation of common solution of variational inequality and certain optimization problems with multiple output sets in Hadamard space 哈达玛德空间中变分不等式和具有多个输出集的某些优化问题的普通解的迭代逼近
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2022-1075
H. Abass, O. Oyewole, Olayinka Martins Onifade, O. Narain
{"title":"Iterative approximation of common solution of variational inequality and certain optimization problems with multiple output sets in Hadamard space","authors":"H. Abass, O. Oyewole, Olayinka Martins Onifade, O. Narain","doi":"10.1515/anly-2022-1075","DOIUrl":"https://doi.org/10.1515/anly-2022-1075","url":null,"abstract":"Abstract In this paper, our main interest is to propose a viscosity iterative method for approximating solutions of variational inequality problems, resolvents of monotone operators and fixed points of ρ-demimetric mappings with multiple output sets in Hadamard spaces. We prove a strong convergence result for approximating the solutions of the aforementioned problems under some mild conditions. Also, we present an application of our main result to a convex minimization problem. Our results improve and generalize many related results in the literature.","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"47 5","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139115122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform 与 (κ,n)-Fourier 变换有关的 Titchmarsh 和 Boas 型定理
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2023-0045
Mehrez Mannai, S. Negzaoui
{"title":"Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform","authors":"Mehrez Mannai, S. Negzaoui","doi":"10.1515/anly-2023-0045","DOIUrl":"https://doi.org/10.1515/anly-2023-0045","url":null,"abstract":"Abstract The aim of this paper is to prove a generalization of Titchmarsh’s theorems for the generalized Fourier transform called ( κ , n {kappa,n} )-Fourier transform, where n is a positive integer and κ is a constant coming from Dunkl theory. As an application, we derive a ( κ , n ) {(kappa,n)} -Fourier multiplier theorem for L 2 {L^{2}} Lipschitz spaces. Moreover, we give necessary conditions to ensure that f belongs to either one of the generalized Lipschitz classes of order m. This allows us to establish the analogue of the Boas-type result for ℱ κ , n {mathcal{F}_{kappa,n}} .","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"39 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139115244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform 与 (κ,n)-Fourier 变换有关的 Titchmarsh 和 Boas 型定理
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2023-0045
Mehrez Mannai, S. Negzaoui
{"title":"Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform","authors":"Mehrez Mannai, S. Negzaoui","doi":"10.1515/anly-2023-0045","DOIUrl":"https://doi.org/10.1515/anly-2023-0045","url":null,"abstract":"Abstract The aim of this paper is to prove a generalization of Titchmarsh’s theorems for the generalized Fourier transform called ( κ , n {kappa,n} )-Fourier transform, where n is a positive integer and κ is a constant coming from Dunkl theory. As an application, we derive a ( κ , n ) {(kappa,n)} -Fourier multiplier theorem for L 2 {L^{2}} Lipschitz spaces. Moreover, we give necessary conditions to ensure that f belongs to either one of the generalized Lipschitz classes of order m. This allows us to establish the analogue of the Boas-type result for ℱ κ , n {mathcal{F}_{kappa,n}} .","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"39 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139116230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of lacunary ℐ-convergent sequences in credibility space 可信空间中裂隙ℐ-收敛序列的特征
IF 1.6 1区 哲学
ANALYSIS Pub Date : 2024-01-03 DOI: 10.1515/anly-2023-0084
Mousami Das, Ömer Kişi, B. Tripathy, Birojit Das
{"title":"Characterization of lacunary ℐ-convergent sequences in credibility space","authors":"Mousami Das, Ömer Kişi, B. Tripathy, Birojit Das","doi":"10.1515/anly-2023-0084","DOIUrl":"https://doi.org/10.1515/anly-2023-0084","url":null,"abstract":"Abstract This research paper aims to introduce the concept of lacunary ideal Cauchy sequences of fuzzy variables in a credibility space. We establish the interrelationships between this notion with lacunary ideal convergent sequences in the same structure from several aspects of credibility. Furthermore, we explore the concepts of strongly lacunary Cauchy, strongly ℐ {mathcal{I}} -lacunary Cauchy, and strongly ℐ ∗ {mathcal{I}^{ast}} -lacunary Cauchy sequences of fuzzy variables within the context of credibility. We also examine the interconnections between these concepts and analyze their relationships.","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"27 3","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139116574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信