与 (κ,n)-Fourier 变换有关的 Titchmarsh 和 Boas 型定理

IF 1.1 1区 哲学 0 PHILOSOPHY
ANALYSIS Pub Date : 2024-01-03 DOI:10.1515/anly-2023-0045
Mehrez Mannai, S. Negzaoui
{"title":"与 (κ,n)-Fourier 变换有关的 Titchmarsh 和 Boas 型定理","authors":"Mehrez Mannai, S. Negzaoui","doi":"10.1515/anly-2023-0045","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to prove a generalization of Titchmarsh’s theorems for the generalized Fourier transform called ( κ , n {\\kappa,n} )-Fourier transform, where n is a positive integer and κ is a constant coming from Dunkl theory. As an application, we derive a ( κ , n ) {(\\kappa,n)} -Fourier multiplier theorem for L 2 {L^{2}} Lipschitz spaces. Moreover, we give necessary conditions to ensure that f belongs to either one of the generalized Lipschitz classes of order m. This allows us to establish the analogue of the Boas-type result for ℱ κ , n {\\mathcal{F}_{\\kappa,n}} .","PeriodicalId":47773,"journal":{"name":"ANALYSIS","volume":"39 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform\",\"authors\":\"Mehrez Mannai, S. Negzaoui\",\"doi\":\"10.1515/anly-2023-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to prove a generalization of Titchmarsh’s theorems for the generalized Fourier transform called ( κ , n {\\\\kappa,n} )-Fourier transform, where n is a positive integer and κ is a constant coming from Dunkl theory. As an application, we derive a ( κ , n ) {(\\\\kappa,n)} -Fourier multiplier theorem for L 2 {L^{2}} Lipschitz spaces. Moreover, we give necessary conditions to ensure that f belongs to either one of the generalized Lipschitz classes of order m. This allows us to establish the analogue of the Boas-type result for ℱ κ , n {\\\\mathcal{F}_{\\\\kappa,n}} .\",\"PeriodicalId\":47773,\"journal\":{\"name\":\"ANALYSIS\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANALYSIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2023-0045\",\"RegionNum\":1,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"PHILOSOPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANALYSIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2023-0045","RegionNum":1,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"PHILOSOPHY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文旨在证明 Titchmarsh 定理对广义傅里叶变换 ( κ , n {\kappa,n} )-Fourier 变换的推广,其中 n 为正整数,κ 为来自 Dunkl 理论的常数。作为应用,我们推导出 L 2 {L^{2}} 的 ( κ , n ) {(\kappa,n)} - 傅立叶乘数定理。Lipschitz 空间的傅里叶乘数定理。此外,我们给出了必要条件,以确保 f 属于阶数为 m 的广义 Lipschitz 类中的任意一类。这使得我们可以为 ℱ κ , n {\mathcal{F}_{\kappa,n}} 建立类似的 Boas 型结果。.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Titchmarsh and Boas-type theorems related to (κ,n)-Fourier transform
Abstract The aim of this paper is to prove a generalization of Titchmarsh’s theorems for the generalized Fourier transform called ( κ , n {\kappa,n} )-Fourier transform, where n is a positive integer and κ is a constant coming from Dunkl theory. As an application, we derive a ( κ , n ) {(\kappa,n)} -Fourier multiplier theorem for L 2 {L^{2}} Lipschitz spaces. Moreover, we give necessary conditions to ensure that f belongs to either one of the generalized Lipschitz classes of order m. This allows us to establish the analogue of the Boas-type result for ℱ κ , n {\mathcal{F}_{\kappa,n}} .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ANALYSIS
ANALYSIS PHILOSOPHY-
CiteScore
1.30
自引率
12.50%
发文量
68
期刊介绍: Analysis is the most established and esteemed forum in which to publish short discussions of topics in philosophy. Articles published in Analysis lend themselves to the presentation of cogent but brief arguments for substantive conclusions, and often give rise to discussions which continue over several interchanges. A wide range of topics are covered including: philosophical logic and philosophy of language, metaphysics, epistemology, philosophy of mind, and moral philosophy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信