{"title":"Zero carbon propulsion in shipping – scenarios for the development of hydrogen and wind technologies with the MATISSE-SHIP model","authors":"Jonathan Köhler","doi":"10.3233/isp-190269","DOIUrl":"https://doi.org/10.3233/isp-190269","url":null,"abstract":"This paper introduces the MATISSE-SHIP model for illustrative long term scenarios of technical change in shipping. It applies current theory for sustainable innovation – ‘transition theory’ – and uses an agent-based modelling (ABM) approach that explicitly represents a range of decision makers with different decision criteria. It models investment decisions for new ships, concentrating on the choice of power train and generates time paths of shares of a range of propulsion technologies. Two scenarios were generated to illustrate pathways under which hydrogen achieves a major market in shipping by 2050: 1) If current SO x /NO x legislation does not lead to the large scale adoption of LNG and there is an expectation of strengthened climate change policy in the medium term, wind/H 2 combined power systems take off, as they can demonstrate cost savings with GHG emissions reductions. The need for high power appli- cations may lead to the uptake of biofuels as they can provide significant reductions in GHG emissions, while not requiring new bunker infrastructure or changes in operating patterns. 2) If, in addition to these developments, there is acceptance of changes in operations towards lower speeds in container shipping and biofuels remain limited in their adoption (e.g. due to limited supply and high fuel costs), combined wind/H2 propulsion systems could be the main alternative to 2050. High power installations are then covered by fossil fuels to 2050, with Power to Gas/Liquid technologies being developed in the longer term.","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-190269","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41417807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maritime fuel cell applications: A tool for conceptual decision making","authors":"Bart Diesveld, E. D. Maeyer","doi":"10.3233/isp-190275","DOIUrl":"https://doi.org/10.3233/isp-190275","url":null,"abstract":"The environmental impact of ships needs to be reduced by using more sustainable and cleaner solutions for power generation on board to meet the increasing amount of regulations. Fuel cells are seen as one of the most promising solutions to address this challenge. There are various fuel cell technologies which can be combined with different fuel types, resulting in a large number of options. In order to find the best prospect, a review of the fuel and fuel cell technologies is performed to get an understanding of the possibilities and applicability of fuel cells on superyachts. Various systems were compared on the following characteristics: density, storage type, maturity, safety, and emissions. Based on these characteristics a decision-making tool was developed to assist in the decision-making process considering of many variables. Using this tool, it has become clear that a fuel cell solution should be specifically selected for any different type of application. The required applications or required usage of a fuel cell could lead to the selection of a completely different type of technology.","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-190275","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69962339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A reduced order model for structural response of the Mark III LNG cargo containment system","authors":"R. W. Bos, J. D. Besten, M. Kaminski","doi":"10.3233/isp-190272","DOIUrl":"https://doi.org/10.3233/isp-190272","url":null,"abstract":"","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"66 1","pages":"295-313"},"PeriodicalIF":0.8,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-190272","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48113550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A compressible two-phase flow model for pressure oscillations in air entrapments following green water impact events on ships","authors":"M. Eijk, P. Wellens","doi":"10.3233/isp-200278","DOIUrl":"https://doi.org/10.3233/isp-200278","url":null,"abstract":"","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"66 1","pages":"315-343"},"PeriodicalIF":0.8,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-200278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49320767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. G. D. Jong, T. G. Vos, R. Beindorff, P. Wellens
{"title":"A control strategy for combined DP station keeping and active roll reduction","authors":"R. G. D. Jong, T. G. Vos, R. Beindorff, P. Wellens","doi":"10.3233/isp-200280","DOIUrl":"https://doi.org/10.3233/isp-200280","url":null,"abstract":"","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"66 1","pages":"345-372"},"PeriodicalIF":0.8,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-200280","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44674831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring the limits of RANS-VoF modelling for air cavity flows","authors":"G. Rotte, M. Kerkvliet, T. V. Terwisga","doi":"10.3233/isp-190270","DOIUrl":"https://doi.org/10.3233/isp-190270","url":null,"abstract":"","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"66 1","pages":"273-293"},"PeriodicalIF":0.8,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-190270","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45110425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Benny Mestemaker, H. V. D. Heuvel, Bernardete Gonçalves Castro
{"title":"Designing the zero emission vessels of the future: Technologic, economic and environmental aspects","authors":"Benny Mestemaker, H. V. D. Heuvel, Bernardete Gonçalves Castro","doi":"10.3233/isp-190276","DOIUrl":"https://doi.org/10.3233/isp-190276","url":null,"abstract":"","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"35 1","pages":"5-31"},"PeriodicalIF":0.8,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-190276","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69962352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Taccani, Stefano Malabotti, C. Dall’Armi, D. Micheli
{"title":"High energy density storage of gaseous marine fuels: An innovative concept and its application to a hydrogen powered ferry","authors":"R. Taccani, Stefano Malabotti, C. Dall’Armi, D. Micheli","doi":"10.3233/isp-190274","DOIUrl":"https://doi.org/10.3233/isp-190274","url":null,"abstract":"The upcoming stricter limitations on both pollutant and greenhouse gases emissions represent a challenge for the shipping sector. The entire ship design process requires an approach to innovation, with a particular focus on both the fuel choice and the power generation system. Among the possible alternatives, natural gas and hydrogen based propulsion systems seem to be promising in the medium and long term. Nonetheless, natural gas and hydrogen storage still represents a problem in terms of cargo volume reduction. This paper focuses on the storage issue, considering compressed gases, and presents an innovative solution, which has been developed in the European project GASVESSEL® that allows to store gaseous fuels with an energy density higher than conventional intermediate pressure containment systems. After a general overview of natural gas and hydrogen as fuels for shipping, a case study of a small Roll-on/Rolloff passenger ferry retrofit is proposed. The study analyses the technical feasibility of the installation of a hybrid power system with batteries and polymer electrolyte membrane fuel cells, fuelled by hydrogen. In particular, a process simulation model has been implemented to assess the quantity of hydrogen that can be stored on board, taking into account boundary conditions such as filling time, on shore storage capacity and cylinder wall temperature. The simulation results show that, if the fuel cells system is run continuously at steady state, to cover the energy need for one day of operation 140 kg of hydrogen are required. Using the innovative pressure cylinder at a storage pressure of 300 bar the volume required by the storage system, assessed on the basis of the containment system outer dimensions, is resulted to be 15.2 m3 with a weight of 2.5 ton. Even if the innovative type of pressure cylinder allows to reach an energy density higher than conventional intermediate pressure cylinders, the volume necessary to store a quantity of energy typical for the shipping sector is many times higher than that required by conventional fuels today used. The analysis points out, as expected, that the filling process is critical to maximize the stored hydrogen mass and that it is critical to measure the temperature of the cylinder walls in order not to exceed the material limits. Nevertheless, for specific application such as the one considered in the paper, the introduction of gaseous hydrogen as fuel, can be considered for implementing zero local emission propulsion system in the medium term.","PeriodicalId":45800,"journal":{"name":"International Shipbuilding Progress","volume":"67 1","pages":"33-56"},"PeriodicalIF":0.8,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/isp-190274","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69962302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}