{"title":"Evaluation of the strain response of FRP partially confined concrete using FEM and DIC testing","authors":"Yunfei Zou","doi":"10.1108/ijsi-11-2023-0112","DOIUrl":"https://doi.org/10.1108/ijsi-11-2023-0112","url":null,"abstract":"PurposeThis study aims to enhance the understanding of fiber-reinforced polymer (FRP) applications in partially confined concrete, with a specific focus on improving economic value and load-bearing capacity. The research addresses the need for a more comprehensive analysis of non-uniform vertical strain responses and precise stress–strain models for FRP partially confined concrete.Design/methodology/approachDIC and strain gauges were employed to gather data during axial compression tests on FRP partially confined concrete specimens. Finite element analysis using ABAQUS was utilized to model partial confinement concrete with various constraint area ratios, ranging from 0 to 1. Experimental findings and simulation results were compared to refine and validate the stress–strain model.FindingsThe experimental results revealed that specimens exhibited strain responses characterized by either hardening or softening in both vertical and horizontal directions. The finite element analysis accurately reflected the relationship between surface constraint forces and axial strains in the x, y and z axes under different constraint area ratios. A proposed stress–strain model demonstrated high predictive accuracy for FRP partially confined concrete columns.Practical implicationsThe stress–strain curves of partially confined concrete, based on Teng's foundation model for fully confined stress–strain behavior, exhibit a high level of predictive accuracy. These findings enhance the understanding of the mechanical behavior of partially confined concrete specimens, which is crucial for designing and assessing FRP confined concrete structures.Originality/valueThis research introduces innovative insights into the superior convenience and efficiency of partial wrapping strategies in the rehabilitation of beam-column joints, surpassing traditional full confinement methods. The study contributes methodological innovation by refining stress–strain models specifically for partially confined concrete, addressing the limitations of existing models. The combination of experimental and simulated assessments using DIC and FEM technologies provides robust empirical evidence, advancing the understanding and optimization of FRP-concrete structure performance. This work holds significance for the broader field of concrete structure reinforcement.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"56 36","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on fatigue curve fitting methods based on the notch stress approach","authors":"Shengfu Xue, Zhengping He, Bingzhi Chen, Jianxin Xu","doi":"10.1108/ijsi-10-2023-0106","DOIUrl":"https://doi.org/10.1108/ijsi-10-2023-0106","url":null,"abstract":"PurposeThis study investigates the fitting techniques for notch fatigue curves, seeking a more reliable method to predict the lifespan of welded structures.Design/methodology/approachBuilding on the fatigue test results of butt and cruciform joints, this research delves into the selection of fitting methods for the notch fatigue curve of welded joints. Both empirical formula and finite element methods (FEMs) were employed to assess the notch stress concentration factor at the toe and root of the two types of welded joints. Considering the mean stress correction and weld misalignment coefficients, the notch fatigue life curves were established using both direct and indirect methods.FindingsAn engineering example was employed to discern the differences between the direct and indirect approaches. The findings highlight the enhanced reliability of the indirect method for fitting the fatigue life curve.Originality/valueWhile the notch stress approach is extensively adopted due to its accurate prediction of component fatigue life, most scholars have overlooked the importance of its curve fitting methods. Existing literature scantily addresses the establishment of these curves. This paper offers a focused examination of fatigue curve fitting techniques, delivering valuable perspectives on method selection.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"47 9","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139380089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofiane Talbi, M. Salem, B. Mechab, Tewfik Ghomari, Ahmed Allem, Belabbes Bachir Bouiadjra, Benelmaarouf Mehdi
{"title":"New investigation of delamination using the VCCT method to predict the damage in bonded composite repair plates subjected to tensile load","authors":"Sofiane Talbi, M. Salem, B. Mechab, Tewfik Ghomari, Ahmed Allem, Belabbes Bachir Bouiadjra, Benelmaarouf Mehdi","doi":"10.1108/ijsi-11-2023-0113","DOIUrl":"https://doi.org/10.1108/ijsi-11-2023-0113","url":null,"abstract":"PurposeThis study provides an analysis of patch repair for cracked aircraft structures. Delamination is a type of damage that affects the patch's behavior. The purpose of this study is to assess the influence of delamination on repair performance.Design/methodology/approachAn analytical and numerical study using the finite element method was conducted for a cracked plate repaired with a patch containing a pre-existing delamination defect. The method for defining the contact pair surfaces and modeling the delamination interaction within the patch interface is specified using the virtual crack closure technique (VCCT) approach.FindingsThe efficiency of the repair is measured in terms of the J-integral. The effects of delamination initiation, mechanical loading, crack length and patch stacking sequences are presented. It is noted that in mode I, delamination propagation is only significant at node A. The numerical results are in good agreement with those of the analytical solution found in the literature. It is observed that the patch's behavior is strongly dependent on loading, crack size and stacking sequences in terms of reducing the structure's lifespan, especially in the presence of delamination.Originality/valueThe numerical modeling presented by the VCCT approach is highly valuable for studying delamination evolution. The influence of loading, crack size and stacking sequences on repair performance is discussed in this work.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"39 10","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sanjay Kumar Singh, L. Sondhi, Rakesh Kumar Sahu, Royal Madan
{"title":"Exploring the mechanical response of functionally graded hollow disks: insights from rotation, gravity and variable heat generation","authors":"Sanjay Kumar Singh, L. Sondhi, Rakesh Kumar Sahu, Royal Madan","doi":"10.1108/ijsi-10-2023-0095","DOIUrl":"https://doi.org/10.1108/ijsi-10-2023-0095","url":null,"abstract":"PurposeThe purpose of the study is to perform elastic stress and deformation analysis of a functionally graded hollow disk under different conditions (rotation, gravity, internal pressure, temperature with variable heat generation) and their combinations.Design/methodology/approachThe classical method of solution, Navier's equation, is used to solve the governing equation. The analysis considers thermal and mechanical boundary conditions and takes into account the variation of material properties according to a power law function of the radius of the disk and grading parameter.FindingsThe findings of the study reveal distinct trends and behaviors based on different grading parameters. The influence of gravity is found to be negligible, resulting in similar patterns to the pure rotation case. Variable heat generation introduces non-linear temperature profiles and higher displacements, with stress values influenced by grading parameters.Practical implicationsThe study provides valuable insights into the behavior of displacement and stresses in hollow disks, offering a deeper understanding of their mechanical response under varying conditions. These insights can be useful in the design and analysis of functionally graded hollow disks in various engineering applications.Originality/valueThe originality and value of this study lies in the consideration of various loading combinations of rotation, gravity, internal pressure and temperature with variable heat generation. Furthermore, the study of effect of various angular rotations, temperatures and pressures expands the understanding of the mechanical behavior of such structures, contributing to the existing body of knowledge in the field.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"49 50","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138995835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Seismic reduction principle and response analysis of variable damping viscous damper system","authors":"Shahe Liang, Zhiqiang Zhang, Aiqun Li","doi":"10.1108/ijsi-08-2023-0085","DOIUrl":"https://doi.org/10.1108/ijsi-08-2023-0085","url":null,"abstract":"PurposeA new type of variable damping viscous damper is developed to meet the settings of different damping parameter values at different working stages. Its main principle and design structure are introduced, and the two-stage and multi-stage controllable damping methods are proposed.Design/methodology/approachThe theoretical calculation formulas of the damping force of power-law fluid variable damping viscous damper at elongated holes are derived, aiming to provide a theoretical basis for the development and application of variable damping viscous dampers. For the newly developed variable damping viscous damper, the dynamic equations for the seismic reduction system with variable damping viscous dampers under a multi-degree-of-freedom system are established. A feasible calculation and analysis method is proposed to derive the solution process of time history analysis. At the same time, a program is also developed using Matlab. The dynamic full-scale test of a two-stage variable damping viscous damper was conducted, demonstrating that the hysteresis curve is complete and the working condition is stable.FindingsThrough the calculation and analysis of examples, the results show that the seismic reduction effect of high and flexible buildings using the seismic reduction system with variable damping viscous dampers is significant. The program developed is used to analyze the seismic response of a broadcasting tower using a variable damping TMD system under large earthquakes. The results indicate that the installation of variable damping viscous dampers can effectively control the maximum inter-story displacement response of TMD water tanks and can effectively consume seismic energy.Originality/valueThis method can provide a guarantee for the safe and effective operation of TMD in wind and vibration control.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"54 12","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138600469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Rama Krishna, J. Sathish, Talari Rahul Mani Datta, S. Raghu Vamsi
{"title":"Crack localization in glass fiber composite beams by experimental modal analysis and multi variable Gaussian process regression method","authors":"S. Rama Krishna, J. Sathish, Talari Rahul Mani Datta, S. Raghu Vamsi","doi":"10.1108/ijsi-09-2023-0092","DOIUrl":"https://doi.org/10.1108/ijsi-09-2023-0092","url":null,"abstract":"PurposeEnsuring the early detection of structural issues in aircraft is crucial for preserving human lives. One effective approach involves identifying cracks in composite structures. This paper employs experimental modal analysis and a multi-variable Gaussian process regression method to detect and locate cracks in glass fiber composite beams.Design/methodology/approachThe present study proposes Gaussian process regression model trained by the first three natural frequencies determined experimentally using a roving impact hammer method with crystal four-channel analyzer, uniaxial accelerometer and experimental modal analysis software. The first three natural frequencies of the cracked composite beams obtained from experimental modal analysis are used to train a multi-variable Gaussian process regression model for crack localization. Radial basis function is used as a kernel function, and hyperparameters are optimized using the negative log marginal likelihood function. Bayesian conditional probability likelihood function is used to estimate the mean and variance for crack localization in composite structures.FindingsThe efficiency of Gaussian process regression is improved in the present work with the normalization of input data. The fitted Gaussian process regression model validates with experimental modal analysis for crack localization in composite structures. The discrepancy between predicted and measured values is 1.8%, indicating strong agreement between the experimental modal analysis and Gaussian process regression methods. Compared to other recent methods in the literature, this approach significantly improves efficiency and reduces error from 18.4% to 1.8%. Gaussian process regression is an efficient machine learning algorithm for crack localization in composite structures.Originality/valueThe experimental modal analysis results are first utilized for crack localization in cracked composite structures. Additionally, the input data are normalized and employed in a machine learning algorithm, such as the multi-variable Gaussian process regression method, to efficiently determine the crack location in these structures.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"7 2","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138601156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on anti-fatigue design method for welded joints of marine engineering equipment","authors":"Chunliang Niu","doi":"10.1108/ijsi-09-2023-0087","DOIUrl":"https://doi.org/10.1108/ijsi-09-2023-0087","url":null,"abstract":"Purpose To obtain better fatigue resistance for marine engineering equipment welded joints in the design stage, the design method of the marine engineering equipment welded joint design stage needs to be studied. Design/methodology/approach Based on the structural stress theory, a design method of the marine engineering equipment welded joints with better fatigue performance is proposed. The effectiveness of the method is demonstrated through the simulation analysis and fatigue test of typical marine engineering equipment welded joints. Findings Methods based on the theoretical advantages of structural stress and the principle of ensuring that the welded joint has a low degree of stress concentration. Originality/value The design method of marine engineering equipment welded joints proposed in this study provides a set of operable design routes for technicians, which can better meet the needs of engineering applications.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"8 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136228942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine learning-based probabilistic fatigue assessment of turbine bladed disks under multisource uncertainties","authors":"Shun-Peng Zhu, Xiaopeng Niu, Behrooz Keshtegar, Changqi Luo, Mansour Bagheri","doi":"10.1108/ijsi-06-2023-0048","DOIUrl":"https://doi.org/10.1108/ijsi-06-2023-0048","url":null,"abstract":"Purpose The multisource uncertainties, including material dispersion, load fluctuation and geometrical tolerance, have crucial effects on fatigue performance of turbine bladed disks. In view of the aim of this paper, it is essential to develop an advanced approach to efficiently quantify their influences and evaluate the fatigue life of turbine bladed disks. Design/methodology/approach In this study, a novel combined machine learning strategy is performed to fatigue assessment of turbine bladed disks. Proposed model consists of two modeling phases in terms of response surface method (RSM) and support vector regression (SVR), namely RSM-SVR. Two different input sets obtained from basic variables were used as the inputs of RSM, then the predicted results by RSM in first phase is used as inputs of SVR model by using a group data-handling strategy. By this way, the nonlinear flexibility of SVR inputs is improved and RSM-SVR model presents the high-tendency and efficiency characteristics. Findings The accuracy and tendency of the RSM-SVR model, applied to the fatigue life estimation of turbine bladed disks, are validated. The results indicate that the proposed model is capable of accurately simulating the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction strategy compared to RSM and SVR for fatigue analysis of complex structures. Originality/value The results indicate that the proposed model is capable of accurately simulate the nonlinear response of turbine bladed disks under multisource uncertainties, and SVR-RSM model provides an accurate prediction compared to RSM and SVRE for fatigue analysis of turbine bladed disk.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"4 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135431914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaobing Wei, Yanan Li, Jianhui Liu, Gai Wang, Yanlei Guo, Xuemei Pan
{"title":"Research on fatigue life prediction model for 2A70-T6 aluminum alloy at different strain ratios","authors":"Yaobing Wei, Yanan Li, Jianhui Liu, Gai Wang, Yanlei Guo, Xuemei Pan","doi":"10.1108/ijsi-05-2023-0044","DOIUrl":"https://doi.org/10.1108/ijsi-05-2023-0044","url":null,"abstract":"Purpose In practical engineering, oil filters often work under asymmetric cyclic loading. In order to improve the prediction accuracy of fatigue life of the oil filters under asymmetric cyclic loading, the effect of strain ratio and low cycle fatigue plastic deformation on fatigue life need to be considered. This paper aims to discuss the aforementioned objective. Design/methodology/approach First, strain-controlled fatigue tests with strain ratios of 0, 0.5 and −1 were carried out on the oil filter material 2A70-T6 aluminum alloy, and the test data were used to obtain strain fatigue life curves at three strain ratios. Then, based on the idea of the constant life curve method, the average value of the ratio of the strain amplitude corresponding to different strain ratios under the same partial life was defined as the strain ratio factor. Finally, the elastic-plastic factor was modified by the strain ratio factor, and a new fatigue life prediction model considering the effect of strain ratio was proposed. Findings The proposed model was validated, respectively, by fatigue test data of 2A70-T6 aluminum alloy, 2124-T851 aluminum alloy and oil filter and the results of the proposed model were compared with the Coffin–Manson equation, Morrow model and Smith–Watson–Topper (SWT) model, showing that the proposed model had higher applicability and accuracy. Originality/value In this work, a strain ratio factor is established based on the idea of the constant life curve method, and the strain ratio factor is used to modify the introduced elastic-plastic factor, and then a new fatigue life prediction model considering the influence of strain ratio and low cycle fatigue plastic deformation on material fatigue damage accumulation is proposed. The results show that the prediction results of the proposed model are in good agreement with the experimental data, and the proposed model has good fatigue life prediction ability considering the influence of strain ratio and lays a foundation for the fatigue life prediction of the oil filter.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136034713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying Ying Feng, Yue Jia, Xiao Qian Sun, Guo Peng Chen, Zong An Luo
{"title":"Hydroforming of double-layer Y-shaped tube controlled by a novel backward punch shape","authors":"Ying Ying Feng, Yue Jia, Xiao Qian Sun, Guo Peng Chen, Zong An Luo","doi":"10.1108/ijsi-07-2023-0064","DOIUrl":"https://doi.org/10.1108/ijsi-07-2023-0064","url":null,"abstract":"Purpose A new backward punch shape was designed and used in the hydroforming process of double-layer Y-shaped tubes to achieve uniform wall thickness. This study focuses on the implementation and effectiveness of this novel punch shape. Design/methodology/approach A numerical simulation and experimental validation of the hydroforming process of double-layer Y-shaped tubes under various backward punch, replenishment ratios (left and right feed ratios) and internal pressure loading paths was performed using finite elements. During the hydroforming process, an analysis was made on the distribution of stress, strain and wall thickness in both the inner and outer layers of the Y-shaped conduit. Findings The novel backward punch parallel to the main tube has been found to improve the distribution of wall thickness in Y-shaped tubes. By controlling the feeding ratio and modifying the loading path of the internal pressure, it is possible to obtain the optimal forming part of the double-layer Y-shaped tube. The comparison between the simulation and experimental results of the double-layer Y-shaped tube formed under the optimal path indicates that the error is within 5% and the distribution of wall thickness is consistent. Originality/value A novel backward punch technique is employed to control the hydroforming process in a Y-shaped tube. A study on hydroforming of double-layer Y-shaped tubes with asymmetric features and challenging forming conditions is being suggested.","PeriodicalId":45359,"journal":{"name":"International Journal of Structural Integrity","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135854025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}