{"title":"Special Issue on Nonlinear Models in Biosignaling, Biosensor and Neural Systems—Modeling, Simulations and Applications","authors":"R. K. Upadhyay","doi":"10.1007/s12591-021-00584-6","DOIUrl":"https://doi.org/10.1007/s12591-021-00584-6","url":null,"abstract":"","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":"29 1","pages":"749 - 750"},"PeriodicalIF":1.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43131574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anti Difference Multiswitching Compound–Compound Combination Synchronization of Seven Chaotic Systems","authors":"A. Khan, D. Khattar, N. Agrawal","doi":"10.1007/s12591-021-00583-7","DOIUrl":"https://doi.org/10.1007/s12591-021-00583-7","url":null,"abstract":"","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43234756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Threshold Dynamics of an <ns0:math><ns0:mi>SEIS</ns0:mi></ns0:math> Epidemic Model with Nonlinear Incidence Rates.","authors":"Mouhcine Naim, Fouad Lahmidi, Abdelwahed Namir","doi":"10.1007/s12591-021-00581-9","DOIUrl":"10.1007/s12591-021-00581-9","url":null,"abstract":"<p><p>In this paper, we consider an <i>SEIS</i> epidemic model with infectious force in latent and infected period, which incorporates by nonlinear incidence rates. The local stability of the equilibria is discussed. By means of <i>Lyapunov</i> functionals and <i>LaSalle's</i> invariance principle, we proved the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium. An application is given and numerical simulation results based on real data of COVID-19 in Morocco are performed to justify theoretical findings.</p>","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":" ","pages":"1-14"},"PeriodicalIF":0.8,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8441045/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39429657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence and Stability of Periodic Solutions of Nicholson-Type System with Nonlinear Density-Dependent Mortality","authors":"G. Ossandón, Daniel Sepúlveda","doi":"10.1007/s12591-021-00580-w","DOIUrl":"https://doi.org/10.1007/s12591-021-00580-w","url":null,"abstract":"","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12591-021-00580-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45726288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Existence and Stability of $$L^{p}$$ Solutions of the Steady State Magnetohydrodynamic Equations with Rough External Forces","authors":"S. V. Uddhao, P. D. Raiter, R. V. Saraykar","doi":"10.1007/s12591-021-00578-4","DOIUrl":"https://doi.org/10.1007/s12591-021-00578-4","url":null,"abstract":"","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12591-021-00578-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41526419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ground State Homoclinic Solutions for a Class of Superquadratic Fourth-Order Differential Equations","authors":"M. Timoumi","doi":"10.1007/S12591-021-00576-6","DOIUrl":"https://doi.org/10.1007/S12591-021-00576-6","url":null,"abstract":"","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12591-021-00576-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42122986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Dynamics of a Bead Sliding on a Freely Rotating Horizontal Wire: An Analytical Solution","authors":"O. Kouba, D. Bernstein","doi":"10.1007/S12591-021-00574-8","DOIUrl":"https://doi.org/10.1007/S12591-021-00574-8","url":null,"abstract":"","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":" ","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12591-021-00574-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45624184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of Fear Effect in a Two Prey-One Predator System with Switching Behaviour in Predation","authors":"D. Sahoo, G. Samanta","doi":"10.1007/S12591-021-00575-7","DOIUrl":"https://doi.org/10.1007/S12591-021-00575-7","url":null,"abstract":"","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":"1 1","pages":"1-23"},"PeriodicalIF":1.0,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S12591-021-00575-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44956745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Liouville Formula for the Uncertain Homogeneous Linear System and Explicit Solutions of the System.","authors":"Vahid Roomi, Hamid Reza Ahmadi","doi":"10.1007/s12591-021-00573-9","DOIUrl":"10.1007/s12591-021-00573-9","url":null,"abstract":"<p><p>This paper presents some new definitions and results about a system of uncertain homogeneous linear differential equations. Introducing the uncertain fundamental system and uncertain fundamental matrix for the uncertain system, the Liouville formula will be proven for the system. Moreover, the explicit solutions of the system will be presented.</p>","PeriodicalId":45352,"journal":{"name":"Differential Equations and Dynamical Systems","volume":" ","pages":"1-14"},"PeriodicalIF":1.0,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39248986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}