Muhammad Adnan Hasnain, Hassaan Malik, Muhammad Mujtaba Asad, Fahad Sherwani
{"title":"Deep learning architectures in dental diagnostics: a systematic comparison of techniques for accurate prediction of dental disease through x-ray imaging","authors":"Muhammad Adnan Hasnain, Hassaan Malik, Muhammad Mujtaba Asad, Fahad Sherwani","doi":"10.1108/ijicc-08-2023-0230","DOIUrl":"https://doi.org/10.1108/ijicc-08-2023-0230","url":null,"abstract":"Purpose The purpose of the study is to classify the radiographic images into three categories such as fillings, cavity and implant to identify dental diseases because dental disease is a very common dental health problem for all people. The detection of dental issues and the selection of the most suitable method of treatment are both determined by the results of a radiological examination. Dental x-rays provide important information about the insides of teeth and their surrounding cells, which helps dentists detect dental issues that are not immediately visible. The analysis of dental x-rays, which is typically done by dentists, is a time-consuming process that can become an error-prone technique due to the wide variations in the structure of teeth and the dentist's lack of expertise. The workload of a dental professional and the chance of misinterpretation can be decreased by the availability of such a system, which can interpret the result of an x-ray automatically. Design/methodology/approach This study uses deep learning (DL) models to identify dental diseases in order to tackle this issue. Four different DL models, such as ResNet-101, Xception, DenseNet-201 and EfficientNet-B0, were evaluated in order to determine which one would be the most useful for the detection of dental diseases (such as fillings, cavity and implant). Findings Loss and accuracy curves have been used to analyze the model. However, the EfficientNet-B0 model performed better compared to Xception, DenseNet-201 and ResNet-101. The accuracy, recall, F1-score and AUC values for this model were 98.91, 98.91, 98.74 and 99.98%, respectively. The accuracy rates for the Xception, ResNet-101 and DenseNet-201 are 96.74, 93.48 and 95.65%, respectively. Practical implications The present study can benefit dentists from using the DL model to more accurately diagnose dental problems. Originality/value This study is conducted to evaluate dental diseases using Convolutional neural network (CNN) techniques to assist dentists in selecting the most effective technique for a particular clinical condition.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136107055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improved particle swarm optimization based on multi-strategy fusion for UAV path planning","authors":"Zijing Ye, Huan Li, Wenhong Wei","doi":"10.1108/ijicc-06-2023-0140","DOIUrl":"https://doi.org/10.1108/ijicc-06-2023-0140","url":null,"abstract":"Purpose Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path. Design/methodology/approach Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning. Findings Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality. Originality/value Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135220536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Komal Ghafoor, Tauqir Ahmad, Muhammad Aslam, Samyan Wahla
{"title":"Improving social interaction of the visually impaired individuals through conversational assistive technology","authors":"Komal Ghafoor, Tauqir Ahmad, Muhammad Aslam, Samyan Wahla","doi":"10.1108/ijicc-06-2023-0147","DOIUrl":"https://doi.org/10.1108/ijicc-06-2023-0147","url":null,"abstract":"Purpose Assistive technology has been developed to assist the visually impaired individuals in their social interactions. Specifically designed to enhance communication skills, facilitate social engagement and improve the overall quality of life, conversational assistive technologies include speech recognition APIs, text-to-speech APIs and various communication tools that are real. Enable real-time interaction. Using natural language processing (NLP) and machine learning algorithms, the technology analyzes spoken language and provides appropriate responses, offering an immersive experience through voice commands, audio feedback and vibration alerts. Design/methodology/approach These technologies have demonstrated their ability to promote self-confidence and self-reliance in visually impaired individuals during social interactions. Moreover, they promise to improve social competence and foster better relationships. In short, assistive technology in conversation stands as a promising tool that empowers the visually impaired individuals, elevating the quality of their social engagement. Findings The main benefit of assistive communication technology is that it will help visually impaired people overcome communication barriers in social contexts. This technology helps them communicate effectively with acquaintances, family, co-workers and even strangers in public places. By enabling smoother and more natural communication, it works to reduce feelings of isolation and increase overall quality of life. Originality/value Research findings include successful activity recognition, aligning with activities on which the VGG-16 model was trained, such as hugging, shaking hands, talking, walking, waving and more. The originality of this study lies in its approach to address the challenges faced by the visually impaired individuals in their social interactions through modern technology. Research adds to the body of knowledge in the area of assistive technologies, which contribute to the empowerment and social inclusion of the visually impaired individuals.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"83 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135565456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MBC-Net: long-range enhanced feature fusion for classifying remote sensing images","authors":"Huaxiang Song","doi":"10.1108/ijicc-07-2023-0198","DOIUrl":"https://doi.org/10.1108/ijicc-07-2023-0198","url":null,"abstract":"Purpose Classification of remote sensing images (RSI) is a challenging task in computer vision. Recently, researchers have proposed a variety of creative methods for automatic recognition of RSI, and feature fusion is a research hotspot for its great potential to boost performance. However, RSI has a unique imaging condition and cluttered scenes with complicated backgrounds. This larger difference from nature images has made the previous feature fusion methods present insignificant performance improvements. Design/methodology/approach This work proposed a two-convolutional neural network (CNN) fusion method named main and branch CNN fusion network (MBC-Net) as an improved solution for classifying RSI. In detail, the MBC-Net employs an EfficientNet-B3 as its main CNN stream and an EfficientNet-B0 as a branch, named MC-B3 and BC-B0, respectively. In particular, MBC-Net includes a long-range derivation (LRD) module, which is specially designed to learn the dependence of different features. Meanwhile, MBC-Net also uses some unique ideas to tackle the problems coming from the two-CNN fusion and the inherent nature of RSI. Findings Extensive experiments on three RSI sets prove that MBC-Net outperforms the other 38 state-of-the-art (STOA) methods published from 2020 to 2023, with a noticeable increase in overall accuracy (OA) values. MBC-Net not only presents a 0.7% increased OA value on the most confusing NWPU set but also has 62% fewer parameters compared to the leading approach that ranks first in the literature. Originality/value MBC-Net is a more effective and efficient feature fusion approach compared to other STOA methods in the literature. Given the visualizations of grad class activation mapping (Grad-CAM), it reveals that MBC-Net can learn the long-range dependence of features that a single CNN cannot. Based on the tendency stochastic neighbor embedding (t-SNE) results, it demonstrates that the feature representation of MBC-Net is more effective than other methods. In addition, the ablation tests indicate that MBC-Net is effective and efficient for fusing features from two CNNs.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An adaptive dynamic community detection algorithm based on multi-objective evolutionary clustering","authors":"Wenxue Wang, Qingxia Li, Wenhong Wei","doi":"10.1108/ijicc-07-2023-0188","DOIUrl":"https://doi.org/10.1108/ijicc-07-2023-0188","url":null,"abstract":"Purpose Community detection of dynamic networks provides more effective information than static network community detection in the real world. The mainstream method for community detection in dynamic networks is evolutionary clustering, which uses temporal smoothness of community structures to connect snapshots of networks in adjacent time intervals. However, the error accumulation issues limit the effectiveness of evolutionary clustering. While the multi-objective evolutionary approach can solve the issue of fixed settings of the two objective function weight parameters in the evolutionary clustering framework, the traditional multi-objective evolutionary approach lacks self-adaptability. Design/methodology/approach This paper proposes a community detection algorithm that integrates evolutionary clustering and decomposition-based multi-objective optimization methods. In this approach, a benchmark correction procedure is added to the evolutionary clustering framework to prevent the division results from drifting. Findings Experimental results demonstrate the superior accuracy of this method compared to similar algorithms in both real and synthetic dynamic datasets. Originality/value To enhance the clustering results, adaptive variances and crossover probabilities are designed based on the relative change amounts of the subproblems decomposed by MOEA/D (A Multiobjective Optimization Evolutionary Algorithm based on Decomposition) to dynamically adjust the focus of different evolutionary stages.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135804942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A robust twin support vector machine based on fuzzy systems","authors":"Jianxiang Qiu, Jialiang Xie, Dongxiao Zhang, Ruping Zhang","doi":"10.1108/ijicc-08-2023-0208","DOIUrl":"https://doi.org/10.1108/ijicc-08-2023-0208","url":null,"abstract":"Purpose Twin support vector machine (TSVM) is an effective machine learning technique. However, the TSVM model does not consider the influence of different data samples on the optimal hyperplane, which results in its sensitivity to noise. To solve this problem, this study proposes a twin support vector machine model based on fuzzy systems (FSTSVM). Design/methodology/approach This study designs an effective fuzzy membership assignment strategy based on fuzzy systems. It describes the relationship between the three inputs and the fuzzy membership of the sample by defining fuzzy inference rules and then exports the fuzzy membership of the sample. Combining this strategy with TSVM, the FSTSVM is proposed. Moreover, to speed up the model training, this study employs a coordinate descent strategy with shrinking by active set. To evaluate the performance of FSTSVM, this study conducts experiments designed on artificial data sets and UCI data sets. Findings The experimental results affirm the effectiveness of FSTSVM in addressing binary classification problems with noise, demonstrating its superior robustness and generalization performance compared to existing learning models. This can be attributed to the proposed fuzzy membership assignment strategy based on fuzzy systems, which effectively mitigates the adverse effects of noise. Originality/value This study designs a fuzzy membership assignment strategy based on fuzzy systems that effectively reduces the negative impact caused by noise and then proposes the noise-robust FSTSVM model. Moreover, the model employs a coordinate descent strategy with shrinking by active set to accelerate the training speed of the model.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135110744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel consensus reaching method for the preference-approval structure based on regret theory and its application in evaluating pension institutions","authors":"Qinggang Shi, Peng Li, Zhi-Wei-Lin Xu","doi":"10.1108/ijicc-02-2023-0023","DOIUrl":"https://doi.org/10.1108/ijicc-02-2023-0023","url":null,"abstract":"PurposeThe purpose of this paper is to propose a consensus method for multi-attribute group decision-making (MAGDM) problems based on preference-approval structure and regret theory, which can improve the efficiency of decision-making and promote the consensus level among individuals.Design/methodology/approachFirst, a new method to obtain the reference points based on regret theory and expert weighting method is proposed. Second, a consensus reaching method based on preference-approval structure is proposed. Then, an adjustment mechanism to further improve the consensus level between individuals is designed. Finally, an example of the assessment of elderly care institutions is used to illustrate the feasibility and effectiveness of the proposed method.FindingsThe feasibility and validity of the proposed method are verified by comparing with the advanced two-stage minimum adjustment method. The compared results show that the proposed method is more consistent with the actual situation.Research limitations/implicationsThis paper presents a consensus reaching method for MAGDM based on preference-approval structure, which considers the avoidance behaviors of individuals and reference points. Decision makers (DMs) can use this approach to rank and categorize alternatives while further increasing the level of consensus among them. This can further help determine the optimal alternative more efficiently.Originality/valueA new MAGDM problem based on the combination of regret theory and individual reference points is proposed. Besides, a new method of obtaining experts' weights and a consensus reaching method for MAGDM based on preference-approval structure are designed.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46969873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiobjective network security dynamic assessment method based on Bayesian network attack graph","authors":"Jialiang Xie, Shanliang Zhang, Honghui Wang, Ming-zhu Chen","doi":"10.1108/ijicc-05-2023-0121","DOIUrl":"https://doi.org/10.1108/ijicc-05-2023-0121","url":null,"abstract":"PurposeWith the rapid development of Internet technology, cybersecurity threats such as security loopholes, data leaks, network fraud, and ransomware have become increasingly prominent, and organized and purposeful cyberattacks have increased, posing more challenges to cybersecurity protection. Therefore, reliable network risk assessment methods and effective network security protection schemes are urgently needed.Design/methodology/approachBased on the dynamic behavior patterns of attackers and defenders, a Bayesian network attack graph is constructed, and a multitarget risk dynamic assessment model is proposed based on network availability, network utilization impact and vulnerability attack possibility. Then, the self-organizing multiobjective evolutionary algorithm based on grey wolf optimization is proposed. And the authors use this algorithm to solve the multiobjective risk assessment model, and a variety of different attack strategies are obtained.FindingsThe experimental results demonstrate that the method yields 29 distinct attack strategies, and then attacker's preferences can be obtained according to these attack strategies. Furthermore, the method efficiently addresses the security assessment problem involving multiple decision variables, thereby providing constructive guidance for the construction of security network, security reinforcement and active defense.Originality/valueA method for network risk assessment methods is given. And this study proposed a multiobjective risk dynamic assessment model based on network availability, network utilization impact and the possibility of vulnerability attacks. The example demonstrates the effectiveness of the method in addressing network security risks.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46760832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kala Nisha Gopinathan, P. Murugesan, Joshua Jebaraj Jeyaraj
{"title":"Stock price prediction using a novel approach in Gaussian mixture model-hidden Markov model","authors":"Kala Nisha Gopinathan, P. Murugesan, Joshua Jebaraj Jeyaraj","doi":"10.1108/ijicc-03-2023-0050","DOIUrl":"https://doi.org/10.1108/ijicc-03-2023-0050","url":null,"abstract":"PurposeThis study aims to provide the best estimate of a stock's next day's closing price for a given day with the help of the hidden Markov model–Gaussian mixture model (HMM-GMM). The results were compared with Hassan and Nath’s (2005) study using HMM and artificial neural network (ANN).Design/methodology/approachThe study adopted an initialization approach wherein the hidden states of the HMM are modelled as GMM using two different approaches. Training of the HMM-GMM model is carried out using two methods. The prediction was performed by taking the closest closing price (having a log-likelihood within the tolerance range) to that of the present one as the closing price for the next day. Mean absolute percentage error (MAPE) has been used to compare the proposed GMM-HMM model against the models of the research study (Hassan and Nath, 2005).FindingsComparing this study with Hassan and Nath (2005) reveals that the proposed model outperformed in 66 out of the 72 different test cases. The results affirm that the model can be used for more accurate time series prediction. Further, compared with the results of the ANN model from Hassan's study, the proposed HMM model outperformed 24 of the 36 test cases.Originality/valueThe study introduced a novel initialization and two training/prediction approaches for the HMM-GMM model. It is to be noted that the study has introduced a GMM-HMM-based closing price estimator for stock price prediction. The proposed method of forecasting the stock prices using GMM-HMM is explainable and has a solid statistical foundation.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":" ","pages":""},"PeriodicalIF":4.3,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43830031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}