{"title":"An adaptive dynamic community detection algorithm based on multi-objective evolutionary clustering","authors":"Wenxue Wang, Qingxia Li, Wenhong Wei","doi":"10.1108/ijicc-07-2023-0188","DOIUrl":null,"url":null,"abstract":"Purpose Community detection of dynamic networks provides more effective information than static network community detection in the real world. The mainstream method for community detection in dynamic networks is evolutionary clustering, which uses temporal smoothness of community structures to connect snapshots of networks in adjacent time intervals. However, the error accumulation issues limit the effectiveness of evolutionary clustering. While the multi-objective evolutionary approach can solve the issue of fixed settings of the two objective function weight parameters in the evolutionary clustering framework, the traditional multi-objective evolutionary approach lacks self-adaptability. Design/methodology/approach This paper proposes a community detection algorithm that integrates evolutionary clustering and decomposition-based multi-objective optimization methods. In this approach, a benchmark correction procedure is added to the evolutionary clustering framework to prevent the division results from drifting. Findings Experimental results demonstrate the superior accuracy of this method compared to similar algorithms in both real and synthetic dynamic datasets. Originality/value To enhance the clustering results, adaptive variances and crossover probabilities are designed based on the relative change amounts of the subproblems decomposed by MOEA/D (A Multiobjective Optimization Evolutionary Algorithm based on Decomposition) to dynamically adjust the focus of different evolutionary stages.","PeriodicalId":45291,"journal":{"name":"International Journal of Intelligent Computing and Cybernetics","volume":"36 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Computing and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijicc-07-2023-0188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose Community detection of dynamic networks provides more effective information than static network community detection in the real world. The mainstream method for community detection in dynamic networks is evolutionary clustering, which uses temporal smoothness of community structures to connect snapshots of networks in adjacent time intervals. However, the error accumulation issues limit the effectiveness of evolutionary clustering. While the multi-objective evolutionary approach can solve the issue of fixed settings of the two objective function weight parameters in the evolutionary clustering framework, the traditional multi-objective evolutionary approach lacks self-adaptability. Design/methodology/approach This paper proposes a community detection algorithm that integrates evolutionary clustering and decomposition-based multi-objective optimization methods. In this approach, a benchmark correction procedure is added to the evolutionary clustering framework to prevent the division results from drifting. Findings Experimental results demonstrate the superior accuracy of this method compared to similar algorithms in both real and synthetic dynamic datasets. Originality/value To enhance the clustering results, adaptive variances and crossover probabilities are designed based on the relative change amounts of the subproblems decomposed by MOEA/D (A Multiobjective Optimization Evolutionary Algorithm based on Decomposition) to dynamically adjust the focus of different evolutionary stages.