P. Klonowicz, P. Lampart, Ł. Witanowski, D. Zaniewski, Łukasz Jędrzejewski, Tomasz
{"title":"Design and performance analysis of ORC centrifugal pumps","authors":"P. Klonowicz, P. Lampart, Ł. Witanowski, D. Zaniewski, Łukasz Jędrzejewski, Tomasz","doi":"10.24425/ather.2020.135860","DOIUrl":"https://doi.org/10.24425/ather.2020.135860","url":null,"abstract":"The purpose of this work is to design and determine the performance of a prototype centrifugal pump impeller for an organic Rankine cycle (ORC) power plant of maximum power 100 kW. The centrifugal pump is especially designed to work on the same shaft as the corresponding ORC microturbine. The ORC unit works on R7100 (HFE7100) – a lowboiling fluid characterized by a zero ozone depletion potential coefficient. The pump has the following rated parameters: nominal flow rate of working fluid 4 kg/s, operating rotor speed 10 000 rpm. The pump designed by means of the 0D meanline method is subject to computational fluid dynamics (CFD) calculations and analysis. The obtained flow field results are discussed and performance characteristics of the pump are presented. The non-cavitating operational region is determined for the pump.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47038603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cooling water flow influence on power plant unit performance for various condenser configurations setup","authors":"","doi":"10.24425/ather.2022.140929","DOIUrl":"https://doi.org/10.24425/ather.2022.140929","url":null,"abstract":"","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47356616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermodynamic analysis of a combined cycle power plant located in Jordan: A case study","authors":"K. Bataineh, B. Khaleel","doi":"10.24425/ather.2020.132951","DOIUrl":"https://doi.org/10.24425/ather.2020.132951","url":null,"abstract":"Efficiency and electrical power output of combined cycle power plants vary according to the ambient conditions. The amount of these variations greatly affects electricity production, fuel consumption, and plant incomes. Obviously, many world countries have a wide range of climatic conditions, which impact the performance of power plants. In this paper, a thermodynamic analysis of an operating power plant located in Jordan is performed with actual operating data acquired from the power plant control unit. The analysis is performed by using first and second laws of thermodynamics. Energy and exergy efficiencies of each component of the power plant system are calculated and the effect of ambient temperature on the components performance is studied. The effects of gas turbine pressure ratio, gas turbine inlet temperature, load and ambient conditions on the combined cycle efficiency, power outputs and exergy destruction are investigated. Energy and exergy efficiencies of the combined cycle power plant are found as 45.29%, and 42.73% respectively when the ambient temperature is 34 ◦C. Furthermore, it is found that the combustion chamber has the largest exergy destruction rate among the system components. The results showed that 73% of the total exergy destruction occurs in the combustion chamber when the ambient temperature is 34 ◦C. Moreover, the results show that the second major exergy loss is in HRSC. The results show that the energy and exergy efficiency of the combined cycle power plant decreases as the ambient temperature increases. According to the calculation results, improvement and modification suggestions are presented.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47932416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New expression to calculate quantity of recovered heat in the earth-pipe-air heat-exchanger operating in winter heating mode","authors":"V. Molcrette, V. Autier","doi":"10.24425/ATHER.2020.133624","DOIUrl":"https://doi.org/10.24425/ATHER.2020.133624","url":null,"abstract":"A new expression is proposed to calculate the earth-energy of an earth-air-pipe heat exchanger during winter heating for three kinds of soil in France. An analytical model is obtained by using numerical computation developed in Scilab – a free open source software. The authors showed the comparison between their simple analytical model and experimental results. They showed the influence of different parameters to specify the size of the heat exchanger.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48200167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combustion of wood pellets in a low-power multi-fuel automatically stoked heating boiler","authors":"W. Zima","doi":"10.24425/ather.2022.140930","DOIUrl":"https://doi.org/10.24425/ather.2022.140930","url":null,"abstract":"This paper presents a test stand equipped, among others, with two boilers intended for the combustion of solid fuels. The first is a single-fuel boiler designed to burn wood pellets only. The second is a multi-fuel boiler intended for the combustion of mainly hard coal (basic fuel) with the grain size of 0.005–0.025 m. Wood pellets can also be fired in this boiler, which in such a case are treated as a substitute fuel. There is a developed and verified algorithm for the control of the multi-fuel boiler operation in a wide range of loads for the basic fuel. However, for the substitute fuel (wood pellets) there are no documented and confirmed results of such testing. The paper presents selected results of testing performed during the combustion of wood pellets in a multi-fuel automatically stoked boiler. Several measuring series were carried out, for which optimal operating conditions were indicated. These conditions may serve as the basis for the development of the boiler operation control algorithm. A detailed analysis was carried out of the flue gas temperatures obtained at the outlet of the boiler combustion chamber and of the contents of carbon monoxide and oxygen in the boiler flue gases.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49538403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relation between thermal conductivity and coordination number for fibre-reinforced composite with random distribution of fibres","authors":"P. Darnowski","doi":"10.24425/ather.2019.128288","DOIUrl":"https://doi.org/10.24425/ather.2019.128288","url":null,"abstract":"Transverse effective thermal conductivity of the random unidirectional fibre-reinforced composite was studied. The geometry was circular with random patterns formed using random sequential addition method. Composite geometries for different volume fraction and fibre radii were generated and their effective thermal conductivities (ETC) were calculated. Influence of fibre-matrix conductivity ratio on composite ETC was investigated for high and low values. Patterns were described by a set of coordination numbers (CN) and correlations between ETC and CN were constructed. The correlations were compared with available formulae presented in literature. Additionally, symmetry of the conductivity tensor for the studied geometries of fibres was analysed.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49420554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance of a combined cycle power plant due to auxiliary heating from the combustion chamber of the gas turbine topping cycle","authors":"Mohammad Nadeem Khan","doi":"10.24425/ather.2021.136952","DOIUrl":"https://doi.org/10.24425/ather.2021.136952","url":null,"abstract":"Energy demand is increasing exponentially in the last decade. To meet such demand there is an urgent need to enhance the power generation capacity of the electrical power generation system worldwide. A combi-ned-cycle gas turbines power plant is an alternative to replace the existing steam/gas electric power plants. The present study is an attempt to investigate the effect of different parameters to optimize the performance of the combined cycle power plant. The input physical parameters such as pressure ratio, air fuel ratio and a fraction of combustible product to heat recovery heat exchanger via gas turbine were varied to determine the work output, thermal efficiency, and exergy destruction. The result of the present study shows that for maximum work output, thermal efficiency as well as total exergy destruction, extraction of combustible gases from the passage of the combustion chamber and gas turbine for heat recovery steam generator is not favorable. Work output and thermal efficiency increase with an increase in pressure ratio and decrease in air fuel ratio but for minimum total exergy destruction, the pressure ratio should be minimum and air fuel ratio should be maximum.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48511832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caio H. Rufino, A. J. T. B. D. Lima, A. P. Mattos, F. U. Allah, Janito V. Ferreir, R. WALDYRL.
{"title":"Effects of combustion products composition models on the exergetic analysis of spark-ignition engine fuelled with ethanol","authors":"Caio H. Rufino, A. J. T. B. D. Lima, A. P. Mattos, F. U. Allah, Janito V. Ferreir, R. WALDYRL.","doi":"10.24425/ather.2019.129548","DOIUrl":"https://doi.org/10.24425/ather.2019.129548","url":null,"abstract":"The engine simulations have become an integral part of engine design and development. They are based on approximations and assumptions. The precision of the results depends on the accuracy of these hypotheses. The simplified models of frozen composition, chemical equilibrium and chemical kinetics provide the compositions of combustion products for engine cycle simulations. This paper evaluates the effects of different operating conditions and hypotheses on the exergetic analysis of a spark-ignition engine. The Brazilian automotive market has the highest number of flex-fuel vehicles. Therefore, a flex-fuel engine is considered for simulations in order to demonstrate the effects of these different hypotheses. The stroke length and bore diameter have the same value of 80 mm. The in-cylinder irreversibility is calculated for each case at the closed part of the engine cycle. A comparative analysis of these hypotheses provides a comprehensive eval-uation of their effects on exergetic analysis. Higher values of accumulated irreversibility are observed for the oversimplified hypothesis.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48636081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental and theoretical investigation of an evacuated tube solar water heater incorporating wickless heat pipes","authors":"H. N. S. Al-Joboory","doi":"10.24425/ATHER.2020.134570","DOIUrl":"https://doi.org/10.24425/ATHER.2020.134570","url":null,"abstract":"The present work involved an extensive outdoor performance testing program of a solar water heating system that consists of four evacuated tube solar collectors incorporating four wickless heat pipes integrated to a storage tank. Tests were conducted under the weather conditions of Baghdad, Iraq. The heat pipes were of 22 mm diameter, 1800 mm evaporator length and 200 mm condenser length. Three heat pipe working fluids were employed, ethanol, methanol, and acetone at an inventory of 50% by volume of the heat pipe evaporator sections. The system was tested outdoors with various load conditions. Results showed that the system performance was not sensitive to the type of heat pipe working fluid employed here. Improved overall efficiency of the solar system was obtained with hot water withdrawal (load conditions) by 14%. A theoretical analysis was formulated for the solar system performance using an energy balance based iterative electrical analogy formulation to compare the experimental temperature behavior and energy output with theoretical predictions. Good agreement of 8% was obtained between theoretical and experimental values.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49011952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Flow characteristics of an automotive compressor with an additively manufactured rotor disc","authors":"A. Andrearczyk","doi":"10.24425/ather.2021.136944","DOIUrl":"https://doi.org/10.24425/ather.2021.136944","url":null,"abstract":"This paper presents the results of experimental research regarding the determination of the flow characteristics of the compressor of an automotive turbocharger with a plastic rotor disc. The disc was manufactured using the 3D printing technology called the multijet printing, which allows complex geometries to be printed with high precision. Currently, in addition to speeding up the manufacturing processes and reducing their costs, 3D printing technologies are increasingly seen as standard tools that can be used in the design and optimization of machine parts. This article is a continuation of research on the possibility of applying additively manufactured elements in turbomachines. The experimental research was carried out at high rotational speeds (up to 110 000 rpm), using the automotive turbocharger with two different compressor rotors ( i.e. one aluminum and one polymer). The first chapters of the paper discuss the preparation stage of the research ( i.e. the manufacture of the rotor, the test rig). Then, the experimental research and the flow characteristics are described. The results obtained for the two types of discs were compared with each other and the area of application of the additively manufactured rotor was determined. The rotor functioned properly in the range of tested operating parameters and the results obtained showed that the technology and material applied could be used in the optimization studies of the blade systems of high-speed fluid-flow machines.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46460051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}