Design and performance analysis of ORC centrifugal pumps

IF 0.8 Q4 THERMODYNAMICS
P. Klonowicz, P. Lampart, Ł. Witanowski, D. Zaniewski, Łukasz Jędrzejewski, Tomasz
{"title":"Design and performance analysis of ORC centrifugal pumps","authors":"P. Klonowicz, P. Lampart, Ł. Witanowski, D. Zaniewski, Łukasz Jędrzejewski, Tomasz","doi":"10.24425/ather.2020.135860","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to design and determine the performance of a prototype centrifugal pump impeller for an organic Rankine cycle (ORC) power plant of maximum power 100 kW. The centrifugal pump is especially designed to work on the same shaft as the corresponding ORC microturbine. The ORC unit works on R7100 (HFE7100) – a lowboiling fluid characterized by a zero ozone depletion potential coefficient. The pump has the following rated parameters: nominal flow rate of working fluid 4 kg/s, operating rotor speed 10 000 rpm. The pump designed by means of the 0D meanline method is subject to computational fluid dynamics (CFD) calculations and analysis. The obtained flow field results are discussed and performance characteristics of the pump are presented. The non-cavitating operational region is determined for the pump.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2020.135860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work is to design and determine the performance of a prototype centrifugal pump impeller for an organic Rankine cycle (ORC) power plant of maximum power 100 kW. The centrifugal pump is especially designed to work on the same shaft as the corresponding ORC microturbine. The ORC unit works on R7100 (HFE7100) – a lowboiling fluid characterized by a zero ozone depletion potential coefficient. The pump has the following rated parameters: nominal flow rate of working fluid 4 kg/s, operating rotor speed 10 000 rpm. The pump designed by means of the 0D meanline method is subject to computational fluid dynamics (CFD) calculations and analysis. The obtained flow field results are discussed and performance characteristics of the pump are presented. The non-cavitating operational region is determined for the pump.
ORC离心泵的设计与性能分析
本工作的目的是设计和确定最大功率为100kw的有机朗肯循环(ORC)电厂的原型离心泵叶轮的性能。离心泵是专门设计为在同一轴上工作,作为相应的ORC微型涡轮机。ORC装置在R7100 (HFE7100)上工作,这是一种低沸点流体,其特点是臭氧消耗潜在系数为零。该泵的额定参数如下:工作流体公称流量4kg /s,运行转子转速10000rpm。采用0D平均线法设计的泵需要进行计算流体动力学(CFD)的计算和分析。对所得流场结果进行了讨论,并介绍了泵的性能特点。确定泵的无空化操作区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Thermodynamics
Archives of Thermodynamics THERMODYNAMICS-
CiteScore
1.80
自引率
22.20%
发文量
0
期刊介绍: The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信