{"title":"Design and development of smokeless stove for a sustainable growth","authors":"R. Nayak","doi":"10.24425/ather.2022.140927","DOIUrl":"https://doi.org/10.24425/ather.2022.140927","url":null,"abstract":"Air pollution has a serious impact on the health of human beings and is a major cause of death worldwide every year. Out of the many sources of air pollution, the smoke generated from household combustion devices is very dangerous due to the incomplete combustion of fuel. Women from rural areas suffer a lot due to this harmful smoke. Diseases like cancer, throat, and lung infection occur in adults and children due to inhalation of this smoke. The traditional chulha used by rural women is operated by using cow dung, straw, and wood, and the air is blown manually by using small metallic pipes. This paper presents the design and development of an innovative stove to maximize flame temperature and minimize air pollution to overcome the health-related issues of rural women. A smokeless stove is presented, in which wood, straw, and cow dung are taken as primary fuel, and superheated steam as a secondary oxidizer for its operation. In this stove, a forced draft is created by the provision of a small fan, which is operated by solar power thus eliminating the need of creating a forced draft manually by the cook which makes this innovative stove superior to the traditional chulha. Owing to the provision of superheated steam, the flame temperature as well as the burning efficiency increases. The cooking time is reduced due to higher flame temperature as compared to the liquefied petroleum gas stove. The main objective of this work is to minimize air pollution and provide a smoke-free environment to the people using such","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48853225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subcooled flow boiling of a citric acid aqueous mixture","authors":"Mohammad Amin Abdolhossein Zadeh, S. Nakhjavani","doi":"10.24425/ather.2020.132955","DOIUrl":"https://doi.org/10.24425/ather.2020.132955","url":null,"abstract":"In the present research, an experimental investigation was conducted to assess the heat transfer coefficient of aqueous citric acid mixtures. The experimental facility provides conditions to assess the influence of various operating conditions such as the heat flux (0–190 kW/m), mass flux (353–1059 kg/ms) and the concentration of citric acid in water (10%– 50% by volume) with a view to measure the subcooled flow boiling heat transfer coefficient of the mixture. The results showed that two main heat transfer mechanisms can be identified including the forced convective and nucleate boiling heat transfer. The onset point of nucleate boiling was also identified, which separates the forced convective heat transfer domain from the nucleate boiling region. The heat transfer coefficient was found to be higher in the nucleate boiling regime due to the presence of bubbles and their interaction. Also, the influence of heat flux on the heat transfer coefficient was more pronounced in the nucleate boiling heat transfer domain, which was also attributed to the increase in bubble size and rate of bubble formation. The obtained results were also compared with those theoretically obtained using the Chen type model and with some experimental data reported in the literature. Results were within a fair agreement of 22% against the Chen model and within 15% against the experimental data.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44292816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical studies of air humidity importance in the first stage rotor of turbine compressor","authors":"S. Dykas, G. Zhang","doi":"10.24425/ather.2020.135861","DOIUrl":"https://doi.org/10.24425/ather.2020.135861","url":null,"abstract":"The paper presents studies of mathematical modelling in transonic flow through the first stage rotor of the axial compressor of homogenous and heterogeneous condensation. The condensation phenomena implemented into a commercial software is based on the classical theory of nucleation and molecular-kinetic droplet growth model. Model is validated against experimental studies available in the literature regarding the flow through the first stage of turbine compressor, i.e. the rotor37 transonic compressor benchmark test. The impact of air humidity and air contamination on the condensation process for different flow conditions is examined. The influence of latent heat release due to condensation exerts a significant impact on the flow structure, thus the analysis of the air humidity and contamination influence on the condensation is presented. The results presented indicate the non-negligible influence of air humidity on the flow structure in the transonic flow regime, thus it is recommended to take condensation phenomenon under consideration in high-velocity airflow simulations.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45667878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of hydrogen blended natural gas on linepack energy for existing high pressure pipelines","authors":"M. Witek, F. Uilhoorn","doi":"10.24425/ather.2022.143174","DOIUrl":"https://doi.org/10.24425/ather.2022.143174","url":null,"abstract":"The aim of this work is to examine the impact of the hydrogen blended natural gas on the linepack energy under emergency scenarios of the pipeline operation. Production of hydrogen from renewable energy sources through electrolysis and subsequently injecting it into the natural gas network, gives flexibility in power grid regulation and the energy storage. In this context, knowledge about the hydrogen percentage content, which can safely effect on materials in a long time steel pipeline service during transport of the hydrogen-natural gas mixture, is essential for operators of a transmission network. This paper first reviews the allowable content of hydrogen that can be blended with natural gas in existing pipeline systems, and then investigates the impact on linepack energy with both startup and shutdown of the compressors scenarios. In the latter case, an unsteady gas flow model is used. To avoid spurious oscillations in the solution domain, a flux limiter is applied for the numerical approximation. The GERG-2008 equation of state is used to calculate the physical properties. For the case study, a tree-topological high pressure gas network, which have been in-service for many years, is selected. The outcomes are valuable for pipeline operators to assess the security of supply.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44541376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Numerical investigation of biomass fast pyrolysis in a free fall reactor","authors":"A. Bieniek, W. Jerzak, A. Magdziarz","doi":"10.24425/ather.2021.138115","DOIUrl":"https://doi.org/10.24425/ather.2021.138115","url":null,"abstract":"This work presents two-dimensional numerical investigations of fast pyrolysis of red oak in a free fall reactor. The Euler–Lagrange approach of multiphase flow theory was proposed in order to describe the behaviour of solid particles in the gaseous domain. The main goal of this study was to examine the impact of the flow rate of inert gas on the pyrolysis process. Calculation domain of the reactor was made according to data found in the literature review. Volume flow rates were 3, 9, 18, and 25 l/min, respectively. Nitrogen was selected as an inert gas. Biomass pyrolysis was conducted at 550 ◦ C with a constant mass flow rate of biomass particles equal to 1 kg/h. A parallel multistage reaction mechanism was applied for the thermal conversion of red oak particles. The composition of biomass was represented by three main pseudo-components: cellulose, hemicellulose and lignin. The received products of pyrolysis were designated into three groups: solid residue (char and unreacted particles), primary tars and non-condensable gases. In this work the impact of the volume flow rate on the heating time of solid particle, temperature distribution, yields and char mass fraction has been analysed. The numerical solutions were verified according to the literature results when the flow of nitrogen was set at 18 l/min. The calculated results showed that biomass particles could be heated for longer when the flow rate of nitrogen was reduced, allowing for a greater concentration of volatile matter.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44584263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neural network approach to compressor modelling with surge margin consideration","authors":"Sergiusz Michał Loryś","doi":"10.24425/ather.2022.140926","DOIUrl":"https://doi.org/10.24425/ather.2022.140926","url":null,"abstract":"Artificial neural networks are gaining popularity thank to their fast and accurate response paired with low computing power requirements. They have been proven as a method for compressor performance prediction with satisfactory results. In this paper a new approach of artificial neural networks modelling is evaluated. The auxiliary parameter of ‘relative stability margin Z’ was introduced and used in learning process. This approach connects two methods of compressor modelling such as neural-networks and auxiliary parameter utilization. Two models were created, one with utilization of the ‘relative stability margin Z’ as a direct indication of surge margin of any estimated condition, and other with standard compressor parameters. The results were compared by determination of fitting, interpolation and extrapolation capabilities of both approaches. The artifi-cial neural networks used during the process was a two-layer feed-forward neural-network with Levenberg–Marquardt algorithm with Bayesian regularization. The experimental data was interpolated to increase the amount of learning data for the neural network. With the two models created, capabilities of this relatively simple type of neural-network to approximate compressor map was also assessed.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47007557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Turbine stage expansion model including internal air film cooling and novel method of calculating theoretical power of a cooled stage","authors":"Paweł Trawiński","doi":"10.24425/ather.2022.143169","DOIUrl":"https://doi.org/10.24425/ather.2022.143169","url":null,"abstract":"Systematic attempts to maximise the efficiency of gas turbine units are achieved, among other possibilities, by increasing the temperature at the inlet to the expansion section. This requires additional technological solutions in advanced systems for cooling the blade rows with air extracted from the compressor section. This paper introduces a new mathematical model describing the expansion process of the working medium in the turbine stage with air film cooling. The model includes temperature and pressure losses caused by the mixing of cooling air in the path of hot exhaust gases. The improvement of the accuracy of the expansion process mathematical description, compared with the currently used models, is achieved by introducing an additional empirical coefficient estimating the distribution of the cooling air along the profile of the turbine blade. The new approach to determine the theoretical power of a cooled turbine stage is also presented. The model is based on the application of three conservation laws: mass, energy and momentum. The advantage of the proposed approach is the inclusion of variable thermodynamic parameters of the cooling medium. The results were compared with the simplified models used in the literature: separate Hartsel expansion, mainstream pressure, weighted-average pressure and fully reversible. The proposed model for expansion and the determination of theoretical power allows for accurate modelling of the performance of a cooled turbine stage under varying conditions.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45125394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization of organic Rankine cycles in a cogeneration system with a high-temperature gas-cooled nuclear reactor – thermodynamic analysis","authors":"J. Jędrzejewski","doi":"10.24425/ather.2021.137554","DOIUrl":"https://doi.org/10.24425/ather.2021.137554","url":null,"abstract":"The paper presents results of a parametric analysis of a high-temperature nuclear-reactor cogeneration system. The aim was to investigate the power efficiency of the system generating heat for a high-temperature technological process and electricity in a Brayton cycle and additionally in organic Rankine cycles using R236ea and R1234ze as working fluids. The results of the analyses indicate that it is possible to combine a 100 MW high-temperature gas-cooled nuclear reactor with a technological process with the demand for heat ranging from 5 to 25 MW, where the required temperature of the process heat carrier is at the level of 650 ◦ C. Calculations were performed for various pressures of R236ea at the turbine inlet. The cogeneration system maximum power efficiency in the analysed cases ranges from ~35.5% to ~45.7% and the maximum share of the organic Rank-ine cycle systems in electric power totals from ~26.9% to ~30.8%. If such a system is used to produce electricity instead of conventional plants, carbon dioxide emissions can be reduced by about 216.03–147.42 kt/year depending on the demand for process heat, including the reduction achieved in the organic Rankine cycle systems by about 58.01–45.39 kt/year (in Poland).","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43940350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling of back propagation neural network to predict the thermal performance of porous bed solar air heater","authors":"Harish Kumar Ghritlahre, R. K. Prasad","doi":"10.24425/ather.2019.131430","DOIUrl":"https://doi.org/10.24425/ather.2019.131430","url":null,"abstract":"The objective of present work is to predict the thermal performance of wire screen porous bed solar air heater using artificial neural network (ANN) technique. This paper also describes the experimental study of porous bed solar air heaters (SAH). Analysis has been performed for two types of porous bed solar air heaters: unidirectional flow and cross flow. The actual experimental data for thermal efficiency of these solar air heaters have been used for developing ANN model and trained with Levenberg-Marquardt (LM) learning algorithm. For an optimal topology the number of neurons in hidden layer is found thirteen (LM-13).The actual experimental values of thermal efficiency of porous bed solar air heaters have been compared with the ANN predicted values. The value of coeffi-cient of determination of proposed network is found as 0.9994 and 0.9964 for unidirectional flow and cross flow types of collector respectively at LM-13. For unidirectional flow SAH, the values of root mean square error, mean absolute error and mean relative percentage error are found to be 0.16359, 0.104235 and 0.24676 respectively, whereas, for cross flow SAH, these values are 0.27693, 0.03428, and 0.36213 respectively. It is concluded that the ANN can be used as an appropriate method for the prediction of thermal performance of porous bed solar air heaters.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47526996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation and numerical analysis of a rectangular pipe with transversal baffle – comparison between zigzag and plane baffles","authors":"C. Zidani","doi":"10.24425/ather.2020.135988","DOIUrl":"https://doi.org/10.24425/ather.2020.135988","url":null,"abstract":"The airflow through a two-dimensional horizontal rectangular cross-section channel in the presence of two baffles has been numerically examined and analyzed in the steady turbulent regime. The baffles were of the zig-zag type or plane one. The calculations are based on the finite volume approach and the average Navier–Stokes equations along with the energy equation, have been solved using the SIMPLE algorithm. The nonuniform structured quadrilateral-type element mesh is used in this study. The fluid flow patterns represented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 5000 to 20 000. Effects of various Reynolds number values on flow fields, dimensionless axial velocity profiles, as well as local and average friction coefficients in the test channel is presented. The obtained results show that the flow structure is characterized by strong deformations and large recirculation regions. In general, the fluid velocity and skin friction loss rise with the increase in the flow rate and hence the Reynolds number.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46877245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}