Numerical investigation of biomass fast pyrolysis in a free fall reactor

IF 0.8 Q4 THERMODYNAMICS
A. Bieniek, W. Jerzak, A. Magdziarz
{"title":"Numerical investigation of biomass fast pyrolysis in a free fall reactor","authors":"A. Bieniek, W. Jerzak, A. Magdziarz","doi":"10.24425/ather.2021.138115","DOIUrl":null,"url":null,"abstract":"This work presents two-dimensional numerical investigations of fast pyrolysis of red oak in a free fall reactor. The Euler–Lagrange approach of multiphase flow theory was proposed in order to describe the behaviour of solid particles in the gaseous domain. The main goal of this study was to examine the impact of the flow rate of inert gas on the pyrolysis process. Calculation domain of the reactor was made according to data found in the literature review. Volume flow rates were 3, 9, 18, and 25 l/min, respectively. Nitrogen was selected as an inert gas. Biomass pyrolysis was conducted at 550 ◦ C with a constant mass flow rate of biomass particles equal to 1 kg/h. A parallel multistage reaction mechanism was applied for the thermal conversion of red oak particles. The composition of biomass was represented by three main pseudo-components: cellulose, hemicellulose and lignin. The received products of pyrolysis were designated into three groups: solid residue (char and unreacted particles), primary tars and non-condensable gases. In this work the impact of the volume flow rate on the heating time of solid particle, temperature distribution, yields and char mass fraction has been analysed. The numerical solutions were verified according to the literature results when the flow of nitrogen was set at 18 l/min. The calculated results showed that biomass particles could be heated for longer when the flow rate of nitrogen was reduced, allowing for a greater concentration of volatile matter.","PeriodicalId":45257,"journal":{"name":"Archives of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ather.2021.138115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents two-dimensional numerical investigations of fast pyrolysis of red oak in a free fall reactor. The Euler–Lagrange approach of multiphase flow theory was proposed in order to describe the behaviour of solid particles in the gaseous domain. The main goal of this study was to examine the impact of the flow rate of inert gas on the pyrolysis process. Calculation domain of the reactor was made according to data found in the literature review. Volume flow rates were 3, 9, 18, and 25 l/min, respectively. Nitrogen was selected as an inert gas. Biomass pyrolysis was conducted at 550 ◦ C with a constant mass flow rate of biomass particles equal to 1 kg/h. A parallel multistage reaction mechanism was applied for the thermal conversion of red oak particles. The composition of biomass was represented by three main pseudo-components: cellulose, hemicellulose and lignin. The received products of pyrolysis were designated into three groups: solid residue (char and unreacted particles), primary tars and non-condensable gases. In this work the impact of the volume flow rate on the heating time of solid particle, temperature distribution, yields and char mass fraction has been analysed. The numerical solutions were verified according to the literature results when the flow of nitrogen was set at 18 l/min. The calculated results showed that biomass particles could be heated for longer when the flow rate of nitrogen was reduced, allowing for a greater concentration of volatile matter.
自由落体反应器中生物质快速热解的数值研究
本工作介绍了红橡木在自由落体反应器中快速热解的二维数值研究。提出了多相流动理论的欧拉-拉格朗日方法,以描述固体颗粒在气相中的行为。本研究的主要目的是检验惰性气体流速对热解过程的影响。根据文献综述中的数据确定了反应器的计算域。体积流量分别为3、9、18和25 l/min。选择氮气作为惰性气体。生物质热解在550℃下进行◦ C,生物质颗粒的恒定质量流量等于1kg/h。将平行多级反应机理应用于红橡颗粒的热转化。生物质的组成由三种主要的伪组分表示:纤维素、半纤维素和木质素。接收到的热解产物分为三组:固体残渣(焦炭和未反应颗粒)、初级焦油和不凝气体。在这项工作中,分析了体积流量对固体颗粒加热时间、温度分布、产率和焦炭质量分数的影响。当氮流量设定为18 l/min时,根据文献结果验证了数值解。计算结果表明,当氮流量降低时,生物质颗粒可以加热更长时间,从而使挥发性物质浓度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Thermodynamics
Archives of Thermodynamics THERMODYNAMICS-
CiteScore
1.80
自引率
22.20%
发文量
0
期刊介绍: The aim of the Archives of Thermodynamics is to disseminate knowledge between scientists and engineers interested in thermodynamics and heat transfer and to provide a forum for original research conducted in Central and Eastern Europe, as well as all over the world. The journal encompass all aspect of the field, ranging from classical thermodynamics, through conduction heat transfer to thermodynamic aspects of multiphase flow. Both theoretical and applied contributions are welcome. Only original papers written in English are consider for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信