Air Soil and Water Research最新文献

筛选
英文 中文
Identification of Suitable Site-specific Recharge Areas using Fuzzy Analytic Hierarchy Process (FAHP) Technique: A Case Study of Iranshahr Basin (Iran) 利用模糊层次分析法(FAHP)确定合适的场地补给区——以伊朗Iranshahr盆地为例
IF 3.8
Air Soil and Water Research Pub Date : 2022-01-01 DOI: 10.1177/11786221211063849
Mojtaba Zaresefat, Mohiuddin Ahrari, Gholam Reza Shoaei, Mahin Etemadifar, I. Aghamolaie, Reza Derakhshani
{"title":"Identification of Suitable Site-specific Recharge Areas using Fuzzy Analytic Hierarchy Process (FAHP) Technique: A Case Study of Iranshahr Basin (Iran)","authors":"Mojtaba Zaresefat, Mohiuddin Ahrari, Gholam Reza Shoaei, Mahin Etemadifar, I. Aghamolaie, Reza Derakhshani","doi":"10.1177/11786221211063849","DOIUrl":"https://doi.org/10.1177/11786221211063849","url":null,"abstract":"Iranshahr Basin is located in the Sistan and Baluchistan province, subject to severe drought and excessive groundwater utilization. Over-reliance on groundwater resources in this area has led to aquifer drawdowns and socio-economic problems. The present study aimed to identify appropriate sites for Artificial Recharge Groundwater (ARG) in a single platform by applying GIS fuzzy logic spatial modeling. Three stages were performed. In stage one, nine factors affecting ARG were collected based on the literature review. In stage two, geology, soil, and land-use layers were digitized from the existing maps. Some layers such as rainfall, unsaturated thickness, water quality, and transmissivity data were imported to ArcGIS environments, and their surface maps were made by Ordinary Kriging (OK) method. In stage three, the parameters were standardized with the fuzzy membership functions, and the GAMMA 0.5 fuzzy overlay model was applied for aggregation parameters. Results showed that 72.8%, 16.7%, 7.7%, 2.5% of the areas were classified as unsuitable, moderate, suitable, and perfectly suitable sites for planning a groundwater recharge site. Subsequently, the minimum area required regarding the possible errors based on the literature review determined six sites (A–E) as areas with higher priority. Then, the recommended unsuitable/suitable sites were validated and omitted by using some more detailed views. Finally, two sites (E and F) were omitted, and four sites (A, B, C, D) were recommended for future artificial recharge planning.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46592999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Predicting Soil Cation Exchange Capacity in Entisols with Divergent Textural Classes: The Case of Northern Sudan Soils 不同质地类别土壤中土壤阳离子交换能力的预测——以苏丹北部土壤为例
IF 3.8
Air Soil and Water Research Pub Date : 2021-11-01 DOI: 10.1177/11786221211042381
Mutwakil Adam, I. Ibrahim, Magboul M. Sulieman, Mojtaba Zeraatpisheh, G. Mishra, E. Brevik
{"title":"Predicting Soil Cation Exchange Capacity in Entisols with Divergent Textural Classes: The Case of Northern Sudan Soils","authors":"Mutwakil Adam, I. Ibrahim, Magboul M. Sulieman, Mojtaba Zeraatpisheh, G. Mishra, E. Brevik","doi":"10.1177/11786221211042381","DOIUrl":"https://doi.org/10.1177/11786221211042381","url":null,"abstract":"Cation exchange capacity (CEC) is an important soil property because it affects the assimilation of nutrients and buffers against soil acidification. Thus, knowledge of CEC is considered key to developing agricultural and environmental models for land management planning. However, in developing countries such as Sudan, there is a lack of soil CEC data due to the absence of research projects and funding to develop this information. Therefore, this research was conducted to predict CEC for large areas using specific soil physical characteristics, including soil texture and saturation percentage (SP), for which there is potentially available data. To achieve this goal, the properties of 430 soil samples (301 for training and 129 for validation) were obtained from the soil database of the Soil Survey Administration, Ministry of Agriculture, Sudan, which had different soil depth intervals (0–0.3 m, 0.3–0.6 m, 0.6–0.9 m, 0.9–1.5 m, and >1.5 m) from Entisols in the Northern State of Sudan. The data were stratified into homogeneous groups based on the textural classes of the main soil order. Then, regression models were performed and evaluated using the coefficient of determination (R2), standard error of the estimate (SEE), and root mean square error (RMSE). The results indicated that in individual Entisols and textural classes, the combined soil covariates silt, clay, and SP were the best properties to predict CEC values (R2 ranged from 0.86 to 0.99). The regression models did not provide statistically significant results for the silty clay loam textural class (R2 ranged from 0.01 and 0.35). The findings of this modeling study could be applied to other Entisols worldwide with divergent textural classes, which could be used to verify the suggested CEC pedotransfer functions and/or improve them. This would help farmers correctly design soil management plans and prevent acidification issues if combined with other soil properties data.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42595904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Maize Yield and Water Use Efficiency Under Different Irrigation Levels and Furrow Irrigation Methods in Semiarid, Tropical Region 半干旱热带地区不同灌溉水平和沟灌方式下玉米产量和水分利用效率
IF 3.8
Air Soil and Water Research Pub Date : 2021-11-01 DOI: 10.1177/11786221211058177
Gobena D. Bayisa, T. Hordofa, Ketema Tezera, A. Tesfaye, Gebeyehu Ashame, T. Wondimu
{"title":"Maize Yield and Water Use Efficiency Under Different Irrigation Levels and Furrow Irrigation Methods in Semiarid, Tropical Region","authors":"Gobena D. Bayisa, T. Hordofa, Ketema Tezera, A. Tesfaye, Gebeyehu Ashame, T. Wondimu","doi":"10.1177/11786221211058177","DOIUrl":"https://doi.org/10.1177/11786221211058177","url":null,"abstract":"Water scarcity is the major limiting factor of agricultural production and productivity in the central rift valley of Ethiopia. Best use of limited water is necessary through water conservation practices. Field experiments were conducted during the dry cropping seasons of 2016 and 2017 on clay loam soil at experimental farm of Melkassa Agricultural Research Centre to evaluate the impact of irrigated furrow methods and deficit irrigation applications on maize (Zea mays) yield and water use efficiency. The study involved three furrow irrigation methods (conventional, fixed, and alternate furrow irrigation) and three irrigation application levels (100%ETc, 75%ETc, and 50%ETc). Furrow irrigation system as main plot and irrigation levels as sub-plot were arranged in split plot design with three randomized complete blocks each year. Greatest yield was obtained under conventional furrow irrigation supplied with 100%ETc of water. Water use efficiency under the same treatment was lesser and shows no significant difference with fixed furrow irrigation and 50%ETc application. Greatest water use efficiency of maize was obtained from alternate furrow irrigation under 75%ETc application and showed no significant difference with 100%ETc application. However, grain yield reduction under 75%ETc applications was very much higher than 100%ETc application. Water saved as a result of 100ETc and 75%ETc applications were 50% and 62.5%, respectively. Therefore, scheduling irrigation time for maize in the central rift valley of Ethiopia and similar semiarid environments could be 100%ETc or 75%ETc application using alternate furrow irrigation. The 75%ETc application has an advantage over 100%ETc applications in saving more water and hence could be applied when water availability is severely limited.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47032194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Monitoring of Amoxicillin and Cephalexin Antibiotics in Municipal WWTPs During Covid-19 Outbreak: A Case Study in Isfahan, Iran 2019冠状病毒病疫情期间城市污水处理厂阿莫西林和头孢氨苄抗生素监测:以伊朗伊斯法罕为例
IF 3.8
Air Soil and Water Research Pub Date : 2021-08-17 DOI: 10.1177/11786221221103879
Mehri Samandari, H. Movahedian Attar, K. Ebrahimpour, F. Mohammadi
{"title":"Monitoring of Amoxicillin and Cephalexin Antibiotics in Municipal WWTPs During Covid-19 Outbreak: A Case Study in Isfahan, Iran","authors":"Mehri Samandari, H. Movahedian Attar, K. Ebrahimpour, F. Mohammadi","doi":"10.1177/11786221221103879","DOIUrl":"https://doi.org/10.1177/11786221221103879","url":null,"abstract":"Antibiotics are non-biodegradable drugs that inhibit the expansion and growth of microorganisms. Especially with the prevalence of Covid-19, the consumption of antibiotics has increased. Therefore, the presence of most prescribed antibiotics from ß-lactams including amoxicillin and cephalexin were studied at two municipal WWTPs in Isfahan. The analytical method was to extract antibiotics from the aqueous phase and then detected them via HPLC/UV. Samples were collected from 2 WWTPs for 13 sampling periods over 2 months between February and March 2020 during the outbreak of Covid-19. In WWTP A, the average concentration of amoxicillin in influent, effluent, and its removal efficiency was 509.64 ± 161.97 µg/L, 352.96 ± 203.88 µg/L, 34.35 ± 31.38%, and the average concentration of cephalexin in influent, effluent, and its removal efficiency was 189.42 ± 176.06 µg/L, 32.6 ± 49.59µg/L, 78.75 ± 23.81%, respectively. In WWTP B, the average concentration of amoxicillin in influent, effluent, and its removal efficiency was 2134.82 ± 3031.53µg/L, 401.09 ± 205.86µg/L, and 54.82 ± 33.29%, respectively. Also, the average concentration of cephalexin in influent, effluent, and its removal efficiency was 183.69 ± 123.48 µg/L, 23.01 ± 40.71 µg/L, and 87.65 ± 21.76%, respectively. According to Mann–Whitney test results, the concentration of antibiotics in both WWTPs had significant differences (p-value < .05), and according to results from the Spearman test no correlation between removal efficiency of antibiotics with other principles wastewater parameters was observed.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44690337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Implication of Long-Term Terracing Watershed Development on Soil Macronutrients and Crop Production in Maybar Subwatershed, South Wello Zone, Ethiopia 埃塞俄比亚南威洛地区Maybar子流域长期梯田流域开发对土壤常量养分和作物生产的影响
IF 3.8
Air Soil and Water Research Pub Date : 2021-01-01 DOI: 10.1177/11786221211004220
T. Taye, A. Moges, Alemayehu Muluneh, Muluken Lebay, Wudu Abiye
{"title":"Implication of Long-Term Terracing Watershed Development on Soil Macronutrients and Crop Production in Maybar Subwatershed, South Wello Zone, Ethiopia","authors":"T. Taye, A. Moges, Alemayehu Muluneh, Muluken Lebay, Wudu Abiye","doi":"10.1177/11786221211004220","DOIUrl":"https://doi.org/10.1177/11786221211004220","url":null,"abstract":"Long-term watershed management in Ethiopia was evaluated in various agro-ecologies starting in the 1980s. Our research was carried out to investigate the effects of long-term watershed management on soil macronutrient status and crop production in the Maybar subwatershed terrace positioning system, which has a long-term data set on various aspects, such as hydroclimatology, agriculture, and social studies. Crop yield data were collected from 40 fixed plots of that data set, and soil samples were collected by topo-sequencing of the catchment from the cultivation field based on different terrace position plot arrangements. The results showed higher crop yield and production of biomass in the upper section or deposition zone of soil and water conservation structure than below the structure or loss zone, but did not vary significantly from the annual production potential. The annual production of cereals was marginally decreased, but not pulse crops, reducing the wheat harvest production from the middle to the loss zone (23.8%) rather than the deposition zone to middle portion of the terrace (8.0%). In comparison, to increase the slope position of the terrace, the redaction percentage of pulse crops (field pea and lentil) is greater, because in the first terrace location (upper to middle) and in the second terrace, the output capacity of field pea was reduced by 22.4%. The condition of soil fertility between the 2 consecutive systems for soil and water protection differed from the upper to the lower land positions. Improvement in soil chemical and physical properties relatively increased toward the upper land position. Soil organic matter, available phosphorus, bulk density, and soil moisture content were significantly affected by soil and water conservation structures (P ⩽ .05). Long-term terrace growth typically has a positive effect on improvements in onsite soil resources and the capacity for crop production. It therefore has a beneficial impact on onsite natural resources, such as enhancing soil macronutrients and increasing productivity in crop yields.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786221211004220","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44971761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Best Management Practices for Sustaining Agricultural Production at Choctawhatchee Watershed in Alabama, USA, in Response to Climate Change 美国阿拉巴马州Choctawhatchee流域应对气候变化的可持续农业生产最佳管理实践
IF 3.8
Air Soil and Water Research Pub Date : 2021-01-01 DOI: 10.1177/1178622121991789
M. Afroz, Runwei Li, Khaleel Muhammed, A. Anandhi, Gang Chen
{"title":"Best Management Practices for Sustaining Agricultural Production at Choctawhatchee Watershed in Alabama, USA, in Response to Climate Change","authors":"M. Afroz, Runwei Li, Khaleel Muhammed, A. Anandhi, Gang Chen","doi":"10.1177/1178622121991789","DOIUrl":"https://doi.org/10.1177/1178622121991789","url":null,"abstract":"Climate change will ultimately result in higher surface temperature and more variable precipitation, negatively affecting agricultural productivity. To sustain the agricultural production in the face of climate change, adaptive agricultural management or best management practices (BMPs) are needed. The currently practiced BMPs include crop rotation, early planting, conservation tillage, cover crops, effective fertilizer use, and so on. This research investigated the agricultural production of BMPs in response to climate change for a Hydrologic Unit Code12 sub-watershed of Choctawhatchee Watershed in Alabama, USA. The dominating soil type of this region was sandy loam and loamy sand soil. Agricultural Production Systems sIMulator and Cropping Systems Simulation Model were used to estimate the agricultural production. Representative Concentration Pathway (RCP) 4.5 and RCP8.5 that projected a temperature increase of 2.3℃ and 4.7℃ were used as climate scenarios. The research demonstrated that crop rotation had positive response to climate change. With peanuts in the rotation, a production increase of 105% was observed for cotton. There was no consistent impact on crop yields by early planting. With selected peanut-cotton rotations, 50% reduced nitrogen fertilizer use was observed to achieve comparable crop yields. In response to climate change, crop rotation with legume incorporation is thus suggested, which increased crop production and reduced fertilizer use.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178622121991789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49504382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Vulnerability Identification of Hajiabad Plain Aquifer: The DRASTIC Model and the GIS-Based Fuzzy Logic Method 哈家巴德平原含水层脆弱性识别:DRASTIC模型和基于gis的模糊逻辑方法
IF 3.8
Air Soil and Water Research Pub Date : 2021-01-01 DOI: 10.1177/11786221211048469
M. Hassanzadeh, Mehdi Momeni Reghabadi, A. Robati
{"title":"Vulnerability Identification of Hajiabad Plain Aquifer: The DRASTIC Model and the GIS-Based Fuzzy Logic Method","authors":"M. Hassanzadeh, Mehdi Momeni Reghabadi, A. Robati","doi":"10.1177/11786221211048469","DOIUrl":"https://doi.org/10.1177/11786221211048469","url":null,"abstract":"Hajiabad plain with an area of about 158 km2 is located about 160 km north of Bandar Abbas in Iran. Due to the significance of this plain in terms of agricultural and drinking water supply in the region and the declining groundwater level in the region, the withdrawal of water resources has been prohibited in recent years. The purpose of this study is to determine the vulnerability of the aquifer using the DRASTIC model and the optimal method of fuzzy logic as well as the drastic method calibrated with nitrate. Finally, the final vulnerability maps were calibrated with EC values. In order to investigate the hydrogeochemical properties of groundwater resources of the plain, 26 water samples were collected from designated points in different periods of the water year 2018. Water samples were analyzed in Hormozgan soil and water laboratory. Also, the results of water sample data analyzed by Hormozgan Regional Water Organization were used. Assessment of aquifer vulnerability based on vulnerability models showed that the east and parts of the center of the plain were subject to the highest vulnerability, while the southern, southwestern, and northern slopes of the plain were of the lowest vulnerability. The determined coefficients between nitrate and DRASTIC vulnerability models and fuzzy optimization were estimated to be 0.41 and 0.36, respectively. Nitrate concentration validation demonstrated that the vulnerabilities of Hajiabad plain aquifer were almost similar under both drastic model and fuzzy optimization methods.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48430669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Potential Soil Loss Estimation and Erosion-Prone Area Prioritization Using RUSLE, GIS, and Remote Sensing in Chereti Watershed, Northeastern Ethiopia 利用RUSLE、GIS和遥感技术对埃塞俄比亚东北部Chereti流域的潜在土壤损失估计和易侵蚀区域的优先排序
IF 3.8
Air Soil and Water Research Pub Date : 2021-01-01 DOI: 10.1177/1178622120985814
Ajanaw Negese, E. Fekadu, Haile Getnet
{"title":"Potential Soil Loss Estimation and Erosion-Prone Area Prioritization Using RUSLE, GIS, and Remote Sensing in Chereti Watershed, Northeastern Ethiopia","authors":"Ajanaw Negese, E. Fekadu, Haile Getnet","doi":"10.1177/1178622120985814","DOIUrl":"https://doi.org/10.1177/1178622120985814","url":null,"abstract":"Soil erosion by water is the major form of land degradation in Chereti watershed, Northeastern Ethiopia. This problem is exacerbated by high rainfall after a long period of dry seasons, undulating topography, intensive cultivation, and lack of proper soil and water conservation measures. Hence, this study aimed to estimate the 23 years (1995-2018) average soil erosion rate of the watershed and to identify and prioritize erosion-vulnerable subwatersheds for conservation planning. The integration of the revised universal soil loss equation (RUSLE), geographic information system, and remote sensing was applied to estimate the long-term soil loss of the watershed. The RUSLE factors such as rainfall erosivity (R), soil erodibility (K), topography (LS), cover and management (C), and support and conservation practices (P) factors were computed and overlayed to estimate the soil loss. The result showed that the annual soil loss rate of the watershed ranged up to 187.47 t ha−1 year−1 in steep slope areas with a mean annual soil loss of 38.7 t ha−1 year−1, and the entire watershed lost a total of about 487 057.7 tons of soil annually. About 57.9% of the annual watershed soil loss was generated from 5 subwatersheds which need prior intervention for the planning and implementation of soil conservation measures. The integrated use of RUSLE with GIS and remote sensing was found to be indispensable, less costly, and effective for the estimation of soil erosion, and prioritization of vulnerable subwatersheds for conservation planning.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178622120985814","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45304431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 31
Effect of Stillage Pretreatment During a Coupled Scoria-Supported Anaerobic Digestion Followed by Aerobic Degradation 污泥预处理对Scoria支持厌氧消化-好氧降解过程的影响
IF 3.8
Air Soil and Water Research Pub Date : 2021-01-01 DOI: 10.1177/1178622121991810
G. D. Gebreeyessus, A. Mekonnen, Y. Chebude, P. Asaithambi, T. Sreekrishnan, E. Alemayehu
{"title":"Effect of Stillage Pretreatment During a Coupled Scoria-Supported Anaerobic Digestion Followed by Aerobic Degradation","authors":"G. D. Gebreeyessus, A. Mekonnen, Y. Chebude, P. Asaithambi, T. Sreekrishnan, E. Alemayehu","doi":"10.1177/1178622121991810","DOIUrl":"https://doi.org/10.1177/1178622121991810","url":null,"abstract":"The objective of this study was to evaluate the treatment efficiency of a coupled stillage anaerobic digestion, which was performed in scoria-packed continuous reactors and following aerobic degradation. The optimum organic loading rate was determined for the continuous anaerobic digestion of a molasses ethanol distillery stillage with and without wet air feed pretreatment. The pretreatment of the molasses ethanol distillery stillage brought a significantly higher chemical oxygen demand removal in anaerobic digestion with an increased loading rate of 2000 mg/L d when compared with the raw stillage. The results also showed a complete removal of the biological oxygen demand following the coupling of anaerobic digestion with aerobic degradation. During the later stillage aerobic treatment, 68% of the chemical oxygen demand was removed within 8 hours of retention time. Despite the color, the removal of organics in stillage due to integrating wet air pretreatment, continuous anaerobic digestion, and aerobic degradation was successful. The pretreatment and hybrid technique also appears as a promising technique toward the sustainable management of stillage, thereby meeting discharge limit set for the ethanol industry by regulators.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178622121991810","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45403271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Soil Water Assessment Tool (SWAT) Modeling Approach to Prioritize Soil Conservation Management in River Basin Critical Areas Coupled With Future Climate Scenario Analysis 一种水土评估工具(SWAT)建模方法,结合未来气候情景分析,优先考虑流域关键地区的水土保持管理
IF 3.8
Air Soil and Water Research Pub Date : 2021-01-01 DOI: 10.1177/11786221211021395
A. Pandey, K. C. Bishal, P. Kalura, V. Chowdary, C. Jha, A. Cerdà
{"title":"A Soil Water Assessment Tool (SWAT) Modeling Approach to Prioritize Soil Conservation Management in River Basin Critical Areas Coupled With Future Climate Scenario Analysis","authors":"A. Pandey, K. C. Bishal, P. Kalura, V. Chowdary, C. Jha, A. Cerdà","doi":"10.1177/11786221211021395","DOIUrl":"https://doi.org/10.1177/11786221211021395","url":null,"abstract":"About 44% of the Indian landmass experiences the adverse impact of land degradation. This loss of sediments caused by soil erosion reduces the water quality of local water bodies and decreases agricultural land productivity. Therefore, decision-makers must formulate policies and management practices for sustainable management of basins that are cost-effective and environment friendly. Application of the best management practices (BMPs) to properly manage river basins is difficult and time-consuming. Its implication under various climate change scenarios makes it more complicated but necessary to achieve sustainable development. In this study, the soil and water assessment tool (SWAT) model was employed to prioritize the Tons river basin’s critical areas in the central Indian states coupled with future climate scenario analysis (2030–2050) using Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 scenarios. The SWAT model was calibrated and validated for simulation of streamflow and sediment yield for daily and monthly scales using the sequential uncertainty fitting (SUFI-2) technique. The values of coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), and root mean square error (RMSE)-observations standard deviation ratio (RSR) were .71, .70, −8.3, and .54, respectively during the calibration period, whereas for validation the values were .72, .71, −3.9, and .56, respectively. SWAT model underestimated the discharge during calibration and overestimated the discharge during validation. Model simulations for sediment load exhibited a similar trend as streamflow simulation, where higher values are reported during August and September. The average annual sediment yield of the basin for the baseline period was 6.85 Mg ha−1, which might increase to 8.66 Mg ha−1 and 8.79 Mg ha−1 in the future years 2031–2050 and 2081–2099, respectively. The BMPs such as recharge structure, contour farming, filter strip 3 and 6 m, porous gully plugs, zero tillage, and conservation tillage operations have been considered to evaluate the soil and water conservation measures. Recharge structure appeared to be the most effective measure with a maximum reduction of sediment by 38.98% during the baseline period, and a 37.15% reduction in the future scenario. Sub-watersheds, namely SW-8, SW-10, SW-12, SW-13, SW-14, SW-17, SW-19, SW-21, SW-22, and SW-23, fall under the high category and are thus considered a critical prone area for the implementation and evaluation of BMPs. Compared to the baseline period, the effectiveness of BMPs is slightly decreasing in the 2040s, increasing in the 2070s and decreasing in the 2090s. Recharge structure and filter strip 6 m have been found to nullify the high soil erosion class completely. Overall, SWAT model simulations under the RCP 8.5 scenarios were observed to be reliable and can be adopted to identify critical areas for river basins having similar climatic and geographical conditions.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/11786221211021395","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43882320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信