{"title":"哈家巴德平原含水层脆弱性识别:DRASTIC模型和基于gis的模糊逻辑方法","authors":"M. Hassanzadeh, Mehdi Momeni Reghabadi, A. Robati","doi":"10.1177/11786221211048469","DOIUrl":null,"url":null,"abstract":"Hajiabad plain with an area of about 158 km2 is located about 160 km north of Bandar Abbas in Iran. Due to the significance of this plain in terms of agricultural and drinking water supply in the region and the declining groundwater level in the region, the withdrawal of water resources has been prohibited in recent years. The purpose of this study is to determine the vulnerability of the aquifer using the DRASTIC model and the optimal method of fuzzy logic as well as the drastic method calibrated with nitrate. Finally, the final vulnerability maps were calibrated with EC values. In order to investigate the hydrogeochemical properties of groundwater resources of the plain, 26 water samples were collected from designated points in different periods of the water year 2018. Water samples were analyzed in Hormozgan soil and water laboratory. Also, the results of water sample data analyzed by Hormozgan Regional Water Organization were used. Assessment of aquifer vulnerability based on vulnerability models showed that the east and parts of the center of the plain were subject to the highest vulnerability, while the southern, southwestern, and northern slopes of the plain were of the lowest vulnerability. The determined coefficients between nitrate and DRASTIC vulnerability models and fuzzy optimization were estimated to be 0.41 and 0.36, respectively. Nitrate concentration validation demonstrated that the vulnerabilities of Hajiabad plain aquifer were almost similar under both drastic model and fuzzy optimization methods.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vulnerability Identification of Hajiabad Plain Aquifer: The DRASTIC Model and the GIS-Based Fuzzy Logic Method\",\"authors\":\"M. Hassanzadeh, Mehdi Momeni Reghabadi, A. Robati\",\"doi\":\"10.1177/11786221211048469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hajiabad plain with an area of about 158 km2 is located about 160 km north of Bandar Abbas in Iran. Due to the significance of this plain in terms of agricultural and drinking water supply in the region and the declining groundwater level in the region, the withdrawal of water resources has been prohibited in recent years. The purpose of this study is to determine the vulnerability of the aquifer using the DRASTIC model and the optimal method of fuzzy logic as well as the drastic method calibrated with nitrate. Finally, the final vulnerability maps were calibrated with EC values. In order to investigate the hydrogeochemical properties of groundwater resources of the plain, 26 water samples were collected from designated points in different periods of the water year 2018. Water samples were analyzed in Hormozgan soil and water laboratory. Also, the results of water sample data analyzed by Hormozgan Regional Water Organization were used. Assessment of aquifer vulnerability based on vulnerability models showed that the east and parts of the center of the plain were subject to the highest vulnerability, while the southern, southwestern, and northern slopes of the plain were of the lowest vulnerability. The determined coefficients between nitrate and DRASTIC vulnerability models and fuzzy optimization were estimated to be 0.41 and 0.36, respectively. Nitrate concentration validation demonstrated that the vulnerabilities of Hajiabad plain aquifer were almost similar under both drastic model and fuzzy optimization methods.\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11786221211048469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786221211048469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Vulnerability Identification of Hajiabad Plain Aquifer: The DRASTIC Model and the GIS-Based Fuzzy Logic Method
Hajiabad plain with an area of about 158 km2 is located about 160 km north of Bandar Abbas in Iran. Due to the significance of this plain in terms of agricultural and drinking water supply in the region and the declining groundwater level in the region, the withdrawal of water resources has been prohibited in recent years. The purpose of this study is to determine the vulnerability of the aquifer using the DRASTIC model and the optimal method of fuzzy logic as well as the drastic method calibrated with nitrate. Finally, the final vulnerability maps were calibrated with EC values. In order to investigate the hydrogeochemical properties of groundwater resources of the plain, 26 water samples were collected from designated points in different periods of the water year 2018. Water samples were analyzed in Hormozgan soil and water laboratory. Also, the results of water sample data analyzed by Hormozgan Regional Water Organization were used. Assessment of aquifer vulnerability based on vulnerability models showed that the east and parts of the center of the plain were subject to the highest vulnerability, while the southern, southwestern, and northern slopes of the plain were of the lowest vulnerability. The determined coefficients between nitrate and DRASTIC vulnerability models and fuzzy optimization were estimated to be 0.41 and 0.36, respectively. Nitrate concentration validation demonstrated that the vulnerabilities of Hajiabad plain aquifer were almost similar under both drastic model and fuzzy optimization methods.
期刊介绍:
Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.