J. Medical Robotics Res.最新文献

筛选
英文 中文
Patient Specific Vascular Benchtop Models for Development and Validation of Medical Devices for Minimally Invasive Procedures 用于微创手术的医疗器械开发和验证的患者特异性血管台式模型
J. Medical Robotics Res. Pub Date : 2016-09-27 DOI: 10.1142/S2424905X16400080
Maryna Kvasnytsia, N. Famaey, M. Böhm, E. Verhoelst
{"title":"Patient Specific Vascular Benchtop Models for Development and Validation of Medical Devices for Minimally Invasive Procedures","authors":"Maryna Kvasnytsia, N. Famaey, M. Böhm, E. Verhoelst","doi":"10.1142/S2424905X16400080","DOIUrl":"https://doi.org/10.1142/S2424905X16400080","url":null,"abstract":"Using realistic benchtop models in early stages of device development can reduce time and efforts necessary to move the device to further testing. In this study, we propose several patient specific vascular benchtop models for the development and validation of a robotic catheter for transcatheter aortic valve implantation. The design and manufacturing of these models, and their properties are presented. Additionally, it is demonstrated that the described design process provides virtual models that are accurately linked to the physical models.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125604229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Intuitive Control Strategies for Teleoperation of Active Catheters in Endovascular Surgery 血管内手术中活动导管遥操作的直观控制策略
J. Medical Robotics Res. Pub Date : 2016-09-27 DOI: 10.1142/S2424905X16400122
A. Devreker, P. T. Tran, Benoît Rosa, H. Praetere, Nicolai Häni, N. Famaey, D. Seatovic, P. Herijgers, J. Sloten, D. Reynaerts, E. V. Poorten
{"title":"Intuitive Control Strategies for Teleoperation of Active Catheters in Endovascular Surgery","authors":"A. Devreker, P. T. Tran, Benoît Rosa, H. Praetere, Nicolai Häni, N. Famaey, D. Seatovic, P. Herijgers, J. Sloten, D. Reynaerts, E. V. Poorten","doi":"10.1142/S2424905X16400122","DOIUrl":"https://doi.org/10.1142/S2424905X16400122","url":null,"abstract":"Cardiovascular surgeons increasingly resort to catheter-based diagnostic and therapeutic interventions because of their limited invasiveness. Although, these approaches allow treatment of patients considered unfit for conventional open surgery, exposure to radiation and high procedural complexity could lead to complications. These factors motivated the introduction of robotic technology offering more dexterous catheters, enhanced visualization and opening new possibilities in terms of guidance and coordinated control. In addition to improvements of patient outcome, through teleoperated catheter control radiation exposure of surgeons can be reduced. In order to limit surgical workload, intuitive mappings between joystick input and resulting catheter motion are essential. This paper presents and compares two proposed mappings and investigates the benefits of additional visual guidance. The comparison is based on data gathered during an experimental campaign involving 14 novices and three surgeons. The participants were asked to perform an endovascular task in a virtual reality simulator presented in the first part of this paper. Statistical results show significant superiority of one mapping with respect to the other and a significant improvement of performance thanks to additional visual guidance. Future work will focus on translating the results to a physical setup for surgical validation, also the learning effect will be analyzed more in-depth.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133699770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
A Survey on the Current Status and Future Challenges Towards Objective Skills Assessment in Endovascular Surgery 血管内外科客观技能评价的现状及未来挑战
J. Medical Robotics Res. Pub Date : 2016-09-27 DOI: 10.1142/S2424905X16400109
E. Mazomenos, Ping-Lin Chang, A. Rolls, D. Hawkes, C. Bicknell, E. V. Poorten, C. Riga, A. Desjardins, D. Stoyanov
{"title":"A Survey on the Current Status and Future Challenges Towards Objective Skills Assessment in Endovascular Surgery","authors":"E. Mazomenos, Ping-Lin Chang, A. Rolls, D. Hawkes, C. Bicknell, E. V. Poorten, C. Riga, A. Desjardins, D. Stoyanov","doi":"10.1142/S2424905X16400109","DOIUrl":"https://doi.org/10.1142/S2424905X16400109","url":null,"abstract":"Minimally invasive endovascular interventions have evolved rapidly over the past decade, facilitated by breakthroughs in medical imaging and sensing, instrumentation and most recently robotics. Catheter-based operations are potentially safer and applicable to a wider patient population due to the reduced comorbidity. As a result endovascular surgery has become the preferred treatment option for conditions previously treated with open surgery and as such the number of patients undergoing endovascular interventions is increasing every year. This fact coupled with a proclivity for reduced working hours results in a requirement for efficient training and assessment of new surgeons, that deviates from the “see one, do one, teach one” model introduced by William Halsted, so that trainees obtain operational expertise in a shorter period. Developing more objective assessment tools based on quantitative metrics is now a recognized need in interventional training and this manuscript reports the current literature for endovascular skills assessment and the associated emerging technologies. A systematic search was performed on PubMed (MEDLINE), Google Scholar, IEEXplore and known journals using the keywords, “endovascular surgery”, “surgical skills”, “endovascular skills”, “surgical training endovascular” and “catheter skills”. Focusing explicitly on endovascular surgical skills, we group related works into three categories based on the metrics used; structured scales and checklists, simulation-based and motion-based metrics. This review highlights the key findings in each category and also provides suggestions for new research opportunities towards fully objective and automated surgical assessment solutions.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128913004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Restoring Haptic Feedback in NOTES Procedures with a Novel Wireless Tissue Stiffness Probe 用一种新型无线组织刚度探头在NOTES程序中恢复触觉反馈
J. Medical Robotics Res. Pub Date : 2016-06-13 DOI: 10.1142/S2424905X16500021
M. Beccani, C. Natali, P. Valdastri, K. Obstein
{"title":"Restoring Haptic Feedback in NOTES Procedures with a Novel Wireless Tissue Stiffness Probe","authors":"M. Beccani, C. Natali, P. Valdastri, K. Obstein","doi":"10.1142/S2424905X16500021","DOIUrl":"https://doi.org/10.1142/S2424905X16500021","url":null,"abstract":"In the past two decades, several instruments have been developed to overcome the loss of haptic sensation in minimally invasive surgery (MIS). Unfortunately, none of the proposed instruments has been clinically adopted or utilized in natural orifice translumenal endoscopic surgery (NOTES) procedures. The challenge is that NOTES instruments require mounting upon flexible endoscopes thus altering endoscope flexibility and dexterity. We have developed a novel wireless tissue stiffness probe (WTSP) that can be used with a flexible endoscope and create a real-time stiffness distribution map with potential to restore haptic sensation in NOTES. The aim of our study was to assess the performance and feasibility of the WTSP in an ex vivo trial (three phantom models of different elasticity; comparing discrimination of human touch with the WTSP) and in an in vivo trans-colonic access NOTES procedure. Overall, the WTSP was able to detect the stiffness of the three phantoms with a relative error smaller than 3% and a success rate of 100% versus 95% when compared to human perception. The novel WTSP was successful in providing the operator with tactile and kinesthetic feedback for accurate discrimination between tissue phantoms. In vivo tissue palpation was feasible using the WTSP in a trans-colonic NOTES procedure. The WTSP did not encumber the maneuverability or dexterity of the flexible endoscope. This innovative approach to tissue palpation has the potential to open a new paradigm in the field of NOTES where no mechanical link between the external platform and the target region exists.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117033023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Nonlinear Force Feedback Enhancement for Cooperative Robotic Neurosurgery Enforces Virtual Boundaries on Cortex Surface 协作机器人神经外科手术的非线性力反馈增强强化皮层表面的虚拟边界
J. Medical Robotics Res. Pub Date : 2016-06-13 DOI: 10.1142/S2424905X1650001X
Elisa Beretta, G. Ferrigno, E. Momi
{"title":"Nonlinear Force Feedback Enhancement for Cooperative Robotic Neurosurgery Enforces Virtual Boundaries on Cortex Surface","authors":"Elisa Beretta, G. Ferrigno, E. Momi","doi":"10.1142/S2424905X1650001X","DOIUrl":"https://doi.org/10.1142/S2424905X1650001X","url":null,"abstract":"Surgeons can benefit from the cooperation with a robotic assistant during the repetitive execution of precise targeting tasks on soft tissues, such as brain cortex stimulation procedures in open-skull neurosurgery. Position-based force-to-motion control schemes may not be satisfactory solution to provide the manipulator with the high compliance desirable during guidance along wide trajectories. A new torque controller with nonlinear force feedback enhancement (FFE) is presented to provide augmented haptic perception to the operator from instrument-tissue interaction. Simulation tests were performed to evaluate the system stability according to different nonlinear force modulation functions (power, sigmoidal and arc tangent). The FFE controller with power modulation was experimentally validated with a pool of nonexpert users using brain-mimicking gelatin phantoms (8–16% concentration). Besides providing hand tremor rejection for a stable holding of the tool, the FFE controller was proven to allow for a safer tissue contact with respect to both robotic assistance without force feedback and freehand executions (50% and 75% reduction of the indentation depth, respectively). Future work will address the evaluation of the safety features of the FFE controller with expert surgeons on a realistic brain phantom, also accounting for unpredictable tissue motions as during seizures due to cortex stimulation.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"500 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130860310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Compact Telemanipulated Retinal-Surgery System that Uses Commercially Available Instruments with a Quick-Change Adapter 一个紧凑的远程操作视网膜手术系统,使用市售仪器与快速更换适配器
J. Medical Robotics Res. Pub Date : 2016-06-13 DOI: 10.1142/S2424905X16300016
M. Nambi, P. Bernstein, J. Abbott
{"title":"A Compact Telemanipulated Retinal-Surgery System that Uses Commercially Available Instruments with a Quick-Change Adapter","authors":"M. Nambi, P. Bernstein, J. Abbott","doi":"10.1142/S2424905X16300016","DOIUrl":"https://doi.org/10.1142/S2424905X16300016","url":null,"abstract":"We present a telemanipulation system for retinal surgery that uses a full range of unmodified commercially available instruments. The system is compact and light enough that it could reasonably be made head-mounted to passively compensate for head movements. Two mechanisms are presented that enable the system to use commercial actuated instruments, and an instrument adapter enables quick-change of instruments during surgery. A custom stylus for a haptic interface enables intuitive and ergonomic telemanipulation of actuated instruments. Experimental results with a force-sensitive phantom eye show that telemanipulated surgery results in reduced forces on the retina compared to manual surgery, and training with the system results in improved performance.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116489250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Nonrigid Registration of Pre-Procedural MRI and Intra-Procedural CT in CT-Guided Cryoablation of Lung Tumors to Improve Lung Tumor Conspicuity CT引导下肺肿瘤冷冻消融术前MRI和术中CT的非刚性配准以改善肺肿瘤的显著性
J. Medical Robotics Res. Pub Date : 2016-06-13 DOI: 10.1142/S2424905X16500045
N. Hata, S. Tatli, A. Yamada, O. Olubiyi, S. Silverman
{"title":"Nonrigid Registration of Pre-Procedural MRI and Intra-Procedural CT in CT-Guided Cryoablation of Lung Tumors to Improve Lung Tumor Conspicuity","authors":"N. Hata, S. Tatli, A. Yamada, O. Olubiyi, S. Silverman","doi":"10.1142/S2424905X16500045","DOIUrl":"https://doi.org/10.1142/S2424905X16500045","url":null,"abstract":"To improve lung tumor conspicuity during CT-guided cryoablations, we used nonrigid image registrations to fuse pre-procedural MR images and intra-procedural CT images and determined which set of CT images taken at planning, targeting, and monitoring phases of the procedure provided the most accurate and fastest registrations. In 10 percutaneous CT-guided cryoablation procedures, MR images were registered with intra-procedural CT images using a nonrigid registration technique using an intensity-based approach with affine and B-Spline transformations. The time to complete the registration as well as the accuracy of the registration defined by Target Registration Error (TRE), Dice Similarity Coefficient (DSC), and Hausdorff Distance (HD) were measured to assess the performance of the registration. The least significant difference (LSD) method was used as a post-hoc analysis for comparing time and accuracy among planning, targeting, and monitoring phases. The mean TRE of the registration ranged from 6.26 (planning) to 10.31 (monitoring) mm. The mean DSC ranged from 83.86 (monitoring) to 89.22 (planning). The mean HD values ranged from 7.74 (targeting) to 12.20 (monitoring). Mean registration time ranged from 68.67 (monitoring) to 92.02 (planning) s. Using HD, registrations in either the planning or targeting phase were more accurate than in the monitoring phase. The registration was faster using monitoring images than using planning images. Nonrigid registration techniques can be used to fuse pre-procedural MR images with intra-procedural CT images with varying performance depending on the CT images taken at the different phases of the procedure. Therefore, caution should be taken in setting expectations on accuracies and speeds of registration depending on the phases of the CT-guided ablation procedures.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133234329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Needle Steering Using Automated Breast Volume Scanner (ABVS) 利用自动乳腺体积扫描仪(ABVS)进行三维针导向
J. Medical Robotics Res. Pub Date : 2016-04-05 DOI: 10.1142/S2424905X16400055
M. Abayazid, P. Moreira, Navid Shahriari, Anastasios Zompas, S. Misra
{"title":"Three-Dimensional Needle Steering Using Automated Breast Volume Scanner (ABVS)","authors":"M. Abayazid, P. Moreira, Navid Shahriari, Anastasios Zompas, S. Misra","doi":"10.1142/S2424905X16400055","DOIUrl":"https://doi.org/10.1142/S2424905X16400055","url":null,"abstract":"Robot-assisted and ultrasound-guided needle insertion systems assist in achieving high targeting accuracy for different applications. In this paper, we introduce the use of Automated Breast Volume Scanner (ABVS) for scanning different soft tissue phantoms. The ABVS is a commercial ultrasound transducer used for clinical breast scanning. A preoperative scan is performed for three-dimensional (3D) target localization and shape reconstruction. The ultrasound transducer is also adapted to be used for tracking the needle tip during steering toward the localized targets. The system uses the tracked needle tip position as a feedback to the needle control algorithm. The bevel-tipped flexible needle is steered under ABVS guidance toward a target while avoiding an obstacle embedded in soft tissue phantom. We present experimental results for 3D reconstruction of different convex and non-convex objects with different sizes. Mean Absolute Distance (MAD) and Dice’s coefficient methods are used to evaluate the 3D shape reconstruction algorithm. The results show that the mean MAD values are 0.30±0.13mm and 0.34±0.17mm for convex and non-convex shapes, respectively, while mean Dice values are 0.87±0.06 (convex) and 0.85±0.06 (non-convex). Three experimental cases are performed to validate the steering system. Mean targeting errors of 0.54±0.24, 1.50±0.82 and 1.82±0.40mm are obtained for steering in gelatin phantom, biological tissue and a human breast phantom, respectively. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3mm radius that can be detected using clinical ultrasound imaging systems.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134407662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Ultrasound-Based Image Guidance and Motion Compensating Control for Robot-Assisted Beating-Heart Surgery 机器人辅助心脏手术的超声图像引导和运动补偿控制
J. Medical Robotics Res. Pub Date : 2016-04-05 DOI: 10.1142/S2424905X1640002X
Meaghan Bowthorpe, M. Tavakoli
{"title":"Ultrasound-Based Image Guidance and Motion Compensating Control for Robot-Assisted Beating-Heart Surgery","authors":"Meaghan Bowthorpe, M. Tavakoli","doi":"10.1142/S2424905X1640002X","DOIUrl":"https://doi.org/10.1142/S2424905X1640002X","url":null,"abstract":"Performing a surgical task on a beating heart requires superhuman skill as the surgeon must manually track the heart’s motion while performing a surgical task. However, the ability to operate on a beating heart would eliminate the need to use a mechanical stabilizer or arrest the heart and connect the patient to a heart-lung machine and would consequently eliminate their side effects. This work develops the image processing and control structure for an ultrasound-guided robot-assisted beating heart surgical system that will move the surgical tool tip in synchrony with the heart. This would allow the surgeon to operate through teleoperation on a virtually stabilized point on the heart. In developing this system, the position data acquired from ultrasound images is upsampled and predicted ahead to compensate for the image acquisition and processing delay. We present the results of a user task based on mitral valve annuloplasty performed under ultrasound guidance.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"220 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125984459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Needle Tracking and Deflection Prediction for Robot-Assisted Needle Insertion Using 2D Ultrasound Images 基于二维超声图像的机器人辅助插针跟踪和偏转预测
J. Medical Robotics Res. Pub Date : 2016-04-05 DOI: 10.1142/S2424905X16400018
M. Waine, C. Rossa, R. Sloboda, N. Usmani, M. Tavakoli
{"title":"Needle Tracking and Deflection Prediction for Robot-Assisted Needle Insertion Using 2D Ultrasound Images","authors":"M. Waine, C. Rossa, R. Sloboda, N. Usmani, M. Tavakoli","doi":"10.1142/S2424905X16400018","DOIUrl":"https://doi.org/10.1142/S2424905X16400018","url":null,"abstract":"In many types of percutaneous needle insertion surgeries, tissue deformation and needle deflection can create significant difficulties for accurate needle placement. In this paper, we present a method for automatic needle tracking in 2D ultrasound (US) images, which is used in a needle–tissue interaction model to estimate current and future needle tip deflection. This is demonstrated using a semi-automatic needle steering system. The US probe can be controlled to follow the needle tip or it can be stopped at an appropriate position to avoid tissue deformation of the target area. US images are used to fully parameterize the needle-tissue model. Once the needle deflection reaches a pre-determined threshold, the robot rotates the needle to correct the tip’s trajectory. Experimental results show that the final needle tip deflection can be estimated with average accuracies between 0.7mm and 1.0mm for insertions with and without rotation. The proposed method provides surgeons with improved US feedback of the needle tip deflection and minimizes the motion of the US probe to reduce tissue deformation of the target area.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134275886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信