{"title":"A computational inspection of the dissociation energy of mid-sized organic dimers.","authors":"J. Czernek, J. Brus, V. Czerneková","doi":"10.1063/5.0093557","DOIUrl":"https://doi.org/10.1063/5.0093557","url":null,"abstract":"The gas-phase value of the dissociation energy (D0) is a key parameter employed in both experimental and theoretical descriptions of noncovalent complexes. The D0 data were obtained for a set of mid-sized organic dimers in their global minima which was located using geometry optimizations that applied ample basis sets together with either the conventional second-order Møller-Plesset (MP2) method or several dispersion-corrected density-functional theory (DFT-D) schemes. The harmonic vibrational zero-point (VZP) and deformation energies from the MP2 calculations were combined with electronic energies from the coupled cluster theory with singles, doubles, and iterative triples [CCSD(T)] extrapolated to the complete basis set (CBS) limit to estimate D0 with the aim of inspecting values that were most recently measured, and an analogous comparison was performed using the DFT-D data. In at least one case (namely, for the aniline⋯methane cluster), the D0 estimate that employed the CCSD(T)/CBS energies differed from experiment in the way that could not be explained by a possible deficiency in the VZP contribution. Curiously, one of the DFT-D schemes (namely, the B3LYP-D3/def2-QZVPPD) was able to reproduce all measured D0 values to within 1.0 kJ/mol from experimental error bars. These findings show the need for further measurements and computations of some of the complexes. In order to facilitate such studies, the physical nature of intermolecular interactions in the investigated dimers was analyzed by means of the DFT-based symmetry-adapted perturbation theory.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"68 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121106954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Matsui, Kakeru Fukuda, Saki Takano, Y. Ikemoto, Takahiko Sasaki, Y. Matsuo
{"title":"Mechanisms of the antiferro-electric ordering in superprotonic conductors Cs3H(SeO4)2 and Cs3D(SeO4)2.","authors":"H. Matsui, Kakeru Fukuda, Saki Takano, Y. Ikemoto, Takahiko Sasaki, Y. Matsuo","doi":"10.1063/5.0088230","DOIUrl":"https://doi.org/10.1063/5.0088230","url":null,"abstract":"Wide ranges of absorbance spectra were measured to elucidate a difference in the antiferro-electric (AF) ordering mechanisms below 50 and 168 K in Cs3H(SeO4)2 and Cs3D(SeO4)2, respectively. Collective excitations due to deuterons successfully observed at 610 cm-1 exhibit a remarkable isotope effect. This indicates that the transfer state in the dimer of Cs3D(SeO4)2 is dominated by a deuteron hopping in contrast to Cs3H(SeO4)2, where a proton hopping makes a tiny contribution compared to a phonon-assisted proton tunneling (PAPT) associated with 440-cm-1 defbend . The fluctuation relevant to the AF ordering in Cs3D(SeO4)2 is not driven by the conventional deuteron hopping but by the phonon-assisted deuteron hopping associated with 310-cm-1 defbend . Consequently, Cs3D(SeO4)2 has a distinct ordering mechanism from Cs3H(SeO4)2, in which quantum fluctuations toward the AF ordering are enhanced through the PAPT associated with the in-phase libration.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126410602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electronic densities and valence bond wave functions.","authors":"D. Hagebaum-Reignier, J. Racine, S. Humbel","doi":"10.1063/5.0094554","DOIUrl":"https://doi.org/10.1063/5.0094554","url":null,"abstract":"Valence bond (VB) wave functions are studied from the density point of view. The density is plotted as a difference with the quasi-state built on the same orbitals. The densities of the components of the VB wave function are also shown. The breathing orbital effect leads to small modifications of the density. It is shown that while the densities of ionic and covalent components are the same, their coupling ends-up in modifications of the electronic density.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"115 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125468409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"All-experimental analysis of doubly resonant sum-frequency generation spectra for Franck-Condon and Herzberg-Teller vibronic modes.","authors":"B. Busson","doi":"10.1063/5.0091374","DOIUrl":"https://doi.org/10.1063/5.0091374","url":null,"abstract":"The transform technique applied to the analysis of doubly resonant sum-frequency generation (DR-SFG) spectra is extended to include Herzberg-Teller (HT) vibronic modes. The experimentally measured overlap spectral function generates all the energy resonant amplitudes of the DR-SFG excitation function for both Franck-Condon (FC) and HT modes. When FC modes dominate the DR-SFG spectra, a methodology is provided to perform efficient curve fitting and orientation analysis in order to extract FC activities of the various vibration modes from experimental spectra with the help of a molecular model. Determination of the FC or HT natures of the vibration modes from DR-SFG data is also shown to be possible through their visible line shapes with an appropriate choice of polarizations. As an example, experimental DR-SFG data suggest that a known HT-active mode in the vibronic structure of Rhodamine 6G monomers exhibits a FC behavior in molecular aggregates.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115809239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luiz Schubert, Pit Langner, D. Ehrenberg, V. Lórenz-Fonfría, J. Heberle
{"title":"Protein conformational changes and protonation dynamics probed by a single shot using quantum-cascade-laser-based IR spectroscopy.","authors":"Luiz Schubert, Pit Langner, D. Ehrenberg, V. Lórenz-Fonfría, J. Heberle","doi":"10.1063/5.0088526","DOIUrl":"https://doi.org/10.1063/5.0088526","url":null,"abstract":"Mid-IR spectroscopy is a powerful and label-free technique to investigate protein reactions. In this study, we use quantum-cascade-laser-based dual-comb spectroscopy to probe protein conformational changes and protonation events by a single-shot experiment. By using a well-characterized membrane protein, bacteriorhodopsin, we provide a comparison between dual-comb spectroscopy and our homebuilt tunable quantum cascade laser (QCL)-based scanning spectrometer as tools to monitor irreversible reactions with high time resolution. In conclusion, QCL-based infrared spectroscopy is demonstrated to be feasible for tracing functionally relevant protein structural changes and proton translocations by single-shot experiments. Thus, we envisage a bright future for applications of this technology for monitoring the kinetics of irreversible reactions as in (bio-)chemical transformations.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133925188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation and detection of metastable formic acid in a supersonic expansion: High resolution infrared spectroscopy of the jet-cooled cis-HCOOH conformer.","authors":"K. Doney, A. Kortyna, Ya-Chu Chan, D. Nesbitt","doi":"10.1063/5.0093401","DOIUrl":"https://doi.org/10.1063/5.0093401","url":null,"abstract":"High-resolution direct absorption infrared spectra of metastable cis-formic acid (HCOOH) trapped in a cis-well resonance behind a 15 kcal/mol barrier are reported for the first time, with the energetically unstable conformer produced in a supersonic slit plasma expansion of trans-formic acid/H2 mixtures. We present a detailed high-resolution rovibrational analysis for cis-formic acid species in the OH stretch (ν1) fundamental, providing first precision vibrational band origin, rotational constants, and term values, which in conjunction with ab initio calculations at the couple-cluster with single, double, and perturbative triple [CCSD(T)]/ANOn (n = 0, 1, 2) level support the experimental assignments and establish critical points on the potential energy surface for internal rotor trans-to-cis isomerization. Relative intensities for a- and b-type transitions observed in the spectra permit the transition dipole moment components to be determined in the body fixed frame and prove to be in good agreement with ab initio CCSD(T) theoretical estimates but in poor agreement with simple bond-dipole predictions. The observed signal dependence on H2 in the discharge suggests the presence of a novel H atom radical chemical mechanism for strongly endothermic \"up-hill\" internal rotor isomerization between trans- and cis-formic acid conformers.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132403859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andoni Ugartemendia, J. M. Mercero, A. de Cózar, E. Jimenez-Izal
{"title":"Publisher's Note: \"Does the composition in PtGe clusters play any role in fighting CO poisoning?\" [J. Chem. Phys. 156, 174301 (2022)].","authors":"Andoni Ugartemendia, J. M. Mercero, A. de Cózar, E. Jimenez-Izal","doi":"10.1063/5.0098161","DOIUrl":"https://doi.org/10.1063/5.0098161","url":null,"abstract":"","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"28 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123588670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finding critical points and reconstruction of electron densities on grids.","authors":"A. Otero-de-la-Roza","doi":"10.1063/5.0090232","DOIUrl":"https://doi.org/10.1063/5.0090232","url":null,"abstract":"The quantum theory of atoms in molecules (QTAIM), developed by Bader and co-workers, is one of the most popular ways of extracting chemical insight from the results of quantum mechanical calculations. One of the basic tasks in QTAIM is to locate the critical points of the electron density and calculate various quantities (density, Laplacian, etc.) on them since these have been found to correlate with molecular properties of interest. If the electron density is given analytically, this process is relatively straightforward. However, locating the critical points is more challenging if the density is known only on a three-dimensional uniform grid. A density grid is common in periodic solids because it is the natural expression for the electron density in plane-wave calculations. In this article, we explore the reconstruction of the electron density from a grid and its use in critical point localization. The proposed reconstruction method employs polyharmonic spline interpolation combined with a smoothing function based on the promolecular density. The critical point search based on this reconstruction is accurate, trivially parallelizable, works for periodic and non-periodic systems, does not present directional lattice bias when the grid is non-orthogonal, and locates all critical points of the underlying electron density in all tests studied. The proposed method also provides an accurate reconstruction of the electron density over the space spanned by the grid, which may be useful in other contexts besides critical point localization.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125435096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlation lengths in nanoconfined water and transport properties.","authors":"Shubham Kumar, B. Bagchi","doi":"10.1063/5.0090811","DOIUrl":"https://doi.org/10.1063/5.0090811","url":null,"abstract":"We report the existence of disparate static and dynamic correlation lengths that could describe the influence of confinement on nanoconfined water (NCW). Various aspects of viscous properties, such as anisotropy and viscoelasticity, of NCW are studied by varying the separation distance \"d\" between two confining hydrophobic plates. The transverse component of the mean square stress exhibits slow spatial decay (measured from the surface) beyond ∼1.8 nm, which was not reported before. The static correlation length obtained from fitting the exponential decay of the transverse mean-square stress with d is 0.75 nm, while the decay time of the stress-stress time correlation function gives a dynamic correlation length of only 0.35 nm. The shortness of the dynamic correlation length seems to arise from the low sensitivity of orientational relaxation to confinement. In the frequency-dependent viscosity, we observe a new peak at about 50 cm-1 that is not present in the bulk. This new peak is prominent even at 3 nm separations. The peak is absent in the bulk, although it is close to the intermolecular -O-O-O- bending mode well known in liquid water. We further explore the relationship between diffusion and viscosity in NCW by varying d.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123521428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Osmotic second virial coefficients for hydrophobic interactions as a function of solute size.","authors":"Hidefumi Naito, R. Okamoto, T. Sumi, K. Koga","doi":"10.1063/5.0097547","DOIUrl":"https://doi.org/10.1063/5.0097547","url":null,"abstract":"To gain quantitative insight into how the overall strength of the hydrophobic interaction varies with the molecular size, we calculate osmotic second virial coefficients B for hydrophobic spherical molecules of different diameters σ in water based on molecular simulation with corrections to the finite-size and finite-concentration effects. It is shown that B (<0) changes by two orders of magnitude greater as σ increases twofold and its solute-size dependence is best fit by a power law B ∝ σα with the exponent α ≃ 6, which contrasts with the cubic power law that the second virial coefficients of gases obey. It is also found that values of B for the solutes in a nonpolar solvent are positive but they obey the same power law as in water. A thermodynamic identity for B derived earlier [K. Koga, V. Holten, and B. Widom, J. Phys. Chem. B 119, 13391 (2015)] indicates that if B is asymptotically proportional to a power of σ, the exponent α must be equal to or greater than 6.","PeriodicalId":446961,"journal":{"name":"The Journal of chemical physics","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116230012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}