Eddie Y Lo, Alvin Ouseph, Raffaele Garofalo, Sumant G Krishnan
{"title":"Anchorless Arthroscopic Transosseous Rotator Cuff Repair.","authors":"Eddie Y Lo, Alvin Ouseph, Raffaele Garofalo, Sumant G Krishnan","doi":"10.2106/JBJS.ST.23.00046","DOIUrl":"10.2106/JBJS.ST.23.00046","url":null,"abstract":"<p><strong>Background: </strong>Rotator cuff repair techniques have evolved over time. The original techniques were open procedures, then surgeons adopted arthroscopic repair procedures with anchors and implants. Today, rotator cuff repair has evolved to be performed as an arthroscopic transosseous technique that is again performed without the use of anchors.</p><p><strong>Description: </strong>In this video, the 5 essential steps of arthroscopic transosseous repair will be demonstrated. (1) Position the patient in either the beach chair or lateral decubitus position. (2) Utilize 4-portal arthroscopy, which allows a consistent vantage point while having 3 other portals for instrumentation. (3) Perform just enough bursectomy to expose the rotator cuff. (4) Anatomically reduce the rotator cuff anatomy where possible. (5) Triple-load the transosseous tunnels with high-strength sutures in order to maximize the biomechanical strength of the repair.</p><p><strong>Alternatives: </strong>Alternative surgical techniques include open rotator cuff repair and single and double-row rotator cuff repair using anchors.</p><p><strong>Rationale: </strong>The goal of any rotator cuff repair is to anatomically restore the rotator cuff. The fundamental principles include a strong initial biomechanical fixation, cuff footprint anatomy restoration, and maximization of biological factors to promote healing of the rotator cuff. Rotator cuff repair was originally performed as an open procedure, which allows for direct visualization of the tear and repair; however, open repair requires some level of deltoid splitting, which can potentially affect postoperative early mobilization. Single-row and double-row cuff repairs can both be performed arthroscopically. Proponents of the double-row procedure prefer that technique for its footprint restoration and stronger biomechanical fixation; however, the double-row procedure can result in overtensioning of the repair and can lead to medial-based rotator cuff failures. Proponents of the single-row procedure prefer that technique for its ease of operation, fewer implants, lower cost, and low repair tension; however, the single-row procedure fixes the tendon at a single point, limiting the repaired footprint, and can be associated with lower fixation strength. The arthroscopic transosseous rotator cuff repair achieves all of the above goals as it provides strong initial fixation and anatomic footprint restoration, which allows maximal patient biology for healing.</p><p><strong>Expected outcomes: </strong>There are numerous studies that can attest to the success of arthroscopic transosseous repair. Some of the benefits include decreased health-care costs and postoperative pain levels. In a 2016 study of 109 patients undergoing arthroscopic transosseous rotator cuff repair, Flanagin et al. reported a mean American Shoulder and Elbow Surgeons (ASES) score of 95 and a failure rate of 3.7% at mid-term follow-up<sup>1</sup>. Similarly, in a","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jay Moran, Christopher M LaPrade, Robert F LaPrade
{"title":"Inside-Out Repair of Medial Meniscal Ramp Lesions in Patients Undergoing Anterior Cruciate Ligament Reconstruction.","authors":"Jay Moran, Christopher M LaPrade, Robert F LaPrade","doi":"10.2106/JBJS.ST.22.00037","DOIUrl":"10.2106/JBJS.ST.22.00037","url":null,"abstract":"<p><strong>Background: </strong>Medial meniscal ramp lesions are disruptions at the meniscocapsular junction and/or meniscotibial attachment of the posterior horn of the medial meniscus, and occur in up to 42% of all acute anterior cruciate ligament (ACL) tears<sup>1,3-5</sup>. Ramp lesions are frequently missed because of the limited diagnostic sensitivity of magnetic resonance imaging (MRI), physical examination, and standard anterior compartment arthroscopic exploration<sup>4,6,7</sup>. Arthroscopic evaluation of ramp lesions often requires a modified Gillquist maneuver and/or a posteromedial accessory portal for adequate assessment of the posteromedial \"blind spot.\"<sup>4,8-10</sup> Clinically, ramp lesions are associated with increased preoperative anterior knee instability, which may increase the risk of ACL graft failure if left untreated<sup>6,13</sup>. Although long-term comparative data on ramp-repair techniques are limited, proper arthroscopic assessment and treatment is recommended for all patients with ramp lesions at the time of ACL reconstruction (ACLR)<sup>1-5</sup>. In the present video article, we demonstrate a systematic approach for the identification and assessment of ramp lesions and describe a mini-open inside-out arthroscopically assisted repair technique for unstable ramp lesions at the time of ACLR.</p><p><strong>Description: </strong>(1) The patient is placed in the supine position, and a contralateral leg holder is utilized to create more working room on the medial side. (2) Standard diagnostic arthroscopy is performed through anteromedial and anterolateral portals. (3) Next, with the arthroscope in the anterolateral portal, the scope is advanced through the intercondylar notch with the knee in 30° of flexion in order to inspect the posterior horn of the medial meniscus. Probing is directed both over the superior aspect of the posterior horn to assess for tears, separation, and/or displacement of the meniscocapsular junction, and under the inferior aspect of the posterior horn to assess the integrity of the meniscotibial attachment. (4) After confirmation of a ramp tear, an open dissection is carried out through the sartorial fascia, with blunt dissection performed anterior to the medial gastrocnemius and above the semimembranosus to create the posteromedial surgical site. (5) A suture-shuttling device is utilized, and the corresponding cannula is placed into the anterolateral portal and directed toward the tear under arthroscopic visualization from the anteromedial portal. (6) Next, the first needle is passed through the meniscus, and the second is delivered through the adjacent capsule to create a vertical or oblique suture pattern. The needles are retrieved from the posteromedial surgical site and promptly cut, and the sutures are tied. (7) Multiple sutures, both above (femoral) and below (tibial) the meniscus, are placed 3 to 5 mm apart in a similar fashion. (8) On completion of the repair, the meniscocapsular junc","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 4","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444584/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142374018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Austin Witt, Eddie Y Lo, Alvin Ouseph, Sumant G Krishnan
{"title":"Cementless Long-Stem Reverse Total Shoulder Arthroplasty as Primary Treatment for Metadiaphyseal Humeral Shaft Fractures.","authors":"Austin Witt, Eddie Y Lo, Alvin Ouseph, Sumant G Krishnan","doi":"10.2106/JBJS.ST.23.00081","DOIUrl":"10.2106/JBJS.ST.23.00081","url":null,"abstract":"<p><strong>Background: </strong>The use of cementless diaphysis-fitting stems has been shown to be an effective treatment option for cases of metadiaphyseal humeral fracture. Complex metadiaphyseal fractures are those that extend below the surgical neck into the diaphysis, which can compromise the metaphyseal fixation of typical arthroplasty designs. The presently described surgical technique circumvents the potential risks associated with the use of cement while also permitting the treatment of common concomitant pathologies, such as arthritis and rotator cuff tendinopathy. Evidence supports the efficacy of this technique, showcasing consistent rates of healing, pain relief, and functional recovery, as well as acceptable complication rates compared with alternative surgical options.</p><p><strong>Description: </strong>The surgical procedure is performed with the patient in a modified beach chair position. A deltopectoral approach is utilized in order to expose the humerus and glenoid. In cases in which the tuberosity is fractured, it is carefully tagged for subsequent repair. The metadiaphyseal extension of the fracture is exposed, and reduction is performed with cerclage cable augmentation as needed. When direct reduction proves challenging, the humeral prosthesis is utilized to aid in reduction. Full-length humeral radiographs and a humeral sounder are utilized to guide the placement of a trial prosthesis, ensuring that the stem spans 2 canal diameters past the fracture and restores the appropriate humeral length. The medullary stem is utilized as support for fracture fragment reduction, with use of a combination of bone stitching and cerclage cables as required. Fractures with compromised proximal humeral bone stock can be further augmented with extramedullary strut allografts and cerclage cables. The allograft strut fixation acts as a neutralization plate to maintain rotational control. The joint is reduced, and fixation of the subscapularis and tuberosity is achieved with use of a transosseous suture technique. This technique combines the use of arthroplasty as well as standard osteosynthesis principles to treat complex metadiaphyseal humerus fractures.</p><p><strong>Alternatives: </strong>Nonoperative treatment may be indicated in a primary setting and represents a multifactorial patient-specific decision. Other surgical options include open reduction with internal fixation with plates or an intramedullary humeral nail, and cemented long-stem arthroplasty. If the fracture is too distal and the surgeon is unable to achieve a length of 2 canal diameters for distal fixation, alternative treatment strategies such as cementation may be required.</p><p><strong>Rationale: </strong>This procedure is most often performed in elderly patients with osteoporosis, who often also have comminuted fracture patterns and conditions such as glenohumeral arthritis or chronic rotator cuff pathology<sup>1,5,6,13,15</sup>. Whereas open reduction and internal fixa","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415096/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308732","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tyler J Thorne, Willie Dong, Thomas F Higgins, David L Rothberg, Justin M Haller, Lucas S Marchand
{"title":"Primary Repair of Complete Quadriceps Tendon Rupture with Extensor Mechanism Deficit.","authors":"Tyler J Thorne, Willie Dong, Thomas F Higgins, David L Rothberg, Justin M Haller, Lucas S Marchand","doi":"10.2106/JBJS.ST.23.00045","DOIUrl":"10.2106/JBJS.ST.23.00045","url":null,"abstract":"<p><strong>Background: </strong>Whereas partial quadriceps tendon ruptures may be treated nonoperatively if the extensor mechanism remains functional, complete ruptures require primary operative repair to achieve optimal functional results<sup>1,2</sup>. The 2 most common techniques are the use of transosseous tunnels and the use of suture anchors. The goal of these procedures is to reconstruct and restore mobility of the extensor mechanism of the leg.</p><p><strong>Description: </strong>The patient is positioned supine with the injured leg exposed. A midline incision to the knee is made over the quadriceps tendon defect, exposing the distal quadriceps and proximal patella. Irrigation is utilized to evacuate the residual hematoma, and the distal quadriceps and proximal patella are debrided of degenerative tissue. When utilizing transosseous tunnels, a nonabsorbable suture is passed full-thickness through the medial or lateral half of the quadriceps tendon in a locked, running pattern (i.e., Krackow). A second nonabsorbable suture is passed full-thickness through the other half of the tendon. There should then be 4 loose strands at the distal quadriceps. The anatomic insertion of the quadriceps tendon is roughened with a sharp curet to expose fresh cancellous bone. Three parallel bone tunnels are created along the longitudinal axis of the patella. The knee is placed in full extension, with a bump under the heel in order to provide slight recurvatum at the knee and to allow for a properly tensioned repair. In pairs, the free ends of the sutures are passed through the tunnels. The sutures are tensioned and tied together in pairs at the distal aspect of the patella. Alternatively, when utilizing suture anchors, Arthrex FiberTape is passed full-thickness through the medial or lateral half of the quadriceps tendon in a Krackow pattern. A second FiberTape is passed full-thickness through the other half of the tendon. There should then be 4 loose tails at the distal quadriceps. The 2 tails of the medial FiberTape are placed into a knotless Arthrex SwiveLock anchor; this step is repeated for the 2 lateral tails. The anatomic insertion of the quadriceps tendon is roughened to expose fresh cancellous bone. With use of a 3.5-mm drill, create 2 parallel drill holes along the longitudinal axis of the patella, with sufficient depth to bury the SwiveLock anchor. Unlike in the transosseous tunnel technique, these drill holes do not run the length of the patella. The holes are then tapped. Following irrigation, the anchors are tensioned into the bone tunnels, and extra tape is cut flush to the bone. For both techniques, additional tears in the medial and lateral retinacula are repaired if present.</p><p><strong>Alternatives: </strong>Alternatives include nonoperative treatment with use of a hinged knee brace; operative treatment with use of simple sutures; and augmentation with use of wire reinforcement, cancellous screws, the Scuderi technique, the Codivilla tech","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415094/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142308733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eric K Montgomery, Dawn M G Rask, David J Wilson, Benjamin F Plucknette, Casey M Sabbag
{"title":"Microsurgical Techniques for Digital Nerve Injuries and Vascular Injuries.","authors":"Eric K Montgomery, Dawn M G Rask, David J Wilson, Benjamin F Plucknette, Casey M Sabbag","doi":"10.2106/JBJS.ST.23.00033","DOIUrl":"https://doi.org/10.2106/JBJS.ST.23.00033","url":null,"abstract":"<p><strong>Background: </strong>Tension-free end-to-end digital nerve repair or reconstruction under loupe or microscope magnification are surgical treatment options for lacerated digital nerves in patients with multiple injured digits, injuries to the border digits, or injuries to the thumb, with the goal of improved or restored sensation and a decreased risk of painful traumatic neuroma formation. Different techniques for primary repair have been described and include epineurial sutures, nerve \"glues\" including fibrin-based gels<sup>1,2</sup>, biologic or synthetic absorbable or nonabsorbable nerve wraps or conduits, or a combination of these materials. Nerve \"glues\" have demonstrated decreased initial gapping at the repair site<sup>3</sup> and an increased tensile load to failure when utilized with a nerve wrap or conduit<sup>4,5</sup>. When there is a gap or defect in the nerve and primary repair is not feasible, nerve allograft and autograft provide similar results and are both better options than conduit reconstruction<sup>6</sup>. Concomitant or isolated digital vascular injuries may also be surgically treated with end-to-end repair in a dysvascular digit, with the goal of digit and function preservation. In the absence of complete circumferential injury or complete amputation, redundant or collateral flow may be present. Single digital artery injuries often do not need to be repaired because of the collateral flow from the other digital artery.</p><p><strong>Description: </strong>Digital nerve and vascular injuries are often found in the context of traumatic wounds. In such cases, surgical exploration is often required, with possible surgical extension of the wounds to facilitate identification of the neurovascular bundles. The proximal and distal ends of the transected nerve and/or artery are identified, and the traumatized ends are incised sharply, maintaining as much length as possible to facilitate end-to-end repair, interposition of a graft, and the use of a conduit. The proximal and distal aspects of the nerve and/or artery are appropriately mobilized by dissecting or releasing any scar tissue or soft tissue that may be tethering the structure. The defect is measured in the natural resting position of the digit. Gentle flexion of the digit may be performed to facilitate a primary repair in the setting of very small defects. Primary repair or reconstruction is selected, and an 8-0 or 9-0 nonabsorbable monofilament suture is utilized to anastomose the appropriate structures under magnification with use of a single or double stitch<sup>6</sup>. A tubular nerve conduit is placed prior to epineurial suturing, or a nerve conduit wrap is applied circumferentially around the repair site and augmented with a fibrin glue. The wound is then irrigated and closed in a standard fashion, as determined by the presence of any soft-tissue or structural injury.</p><p><strong>Alternatives: </strong>Alternatives to primary repair include the use of cond","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392468/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cementless, Cruciate-Retaining Primary Total Knee Arthroplasty Using Conventional Instrumentation: Technical Pearls and Intraoperative Considerations.","authors":"Andrew B Harris, Julius K Oni","doi":"10.2106/JBJS.ST.23.00036","DOIUrl":"https://doi.org/10.2106/JBJS.ST.23.00036","url":null,"abstract":"<p><strong>Background: </strong>Total knee arthroplasty (TKA) is commonly indicated for patients with severe tibiofemoral osteoarthritis in whom nonoperative treatment has failed. TKA is one of the most commonly performed orthopaedic surgical procedures in the United States and is associated with substantial improvements in pain, function, and quality of life<sup>1-3</sup>. The procedure may be performed with cemented, cementless, or hybrid cemented and cementless components<sup>4,5</sup>. Cementless TKA utilizing contemporary implant designs has been demonstrated to have excellent long-term survival and outcomes in patients who are appropriately indicated for this procedure<sup>5-8</sup>. The preference of the senior author is to perform this procedure with use of a cruciate-retaining implant design when feasible, and according to the principles of mechanical alignment to guide osseous resection. It should be noted that nearly all recent studies on outcomes following cementless TKA utilize traditional mechanical alignment<sup>7-9</sup>. Alternative alignment strategies, such as gap balancing and kinematic alignment, have not been as well studied in cementless TKA; however, preliminary short-term studies suggest comparable survivorship with restricted kinematic alignment and gap balancing compared with mechanical alignment in patients undergoing cementless TKA<sup>10,11</sup>.</p><p><strong>Description: </strong>Our preferred surgical technique for cementless TKA begins with the patient in the supine position. A thigh tourniquet is applied, and a valgus post is set at the level of the tourniquet. A flexion pad is also placed at 90°, with a bar at 20°. After sterile skin preparation and draping, a time-out is conducted, and the tourniquet is raised. The surgeon makes a medial parapatellar incision, which begins from 1 cm medial to the medial edge of the patella, extending from the tibial tubercle to 2 fingers above the proximal pole of the patella, using a knife and with the knee at 90° of flexion. Scissors are then used to find the fat above the fascia and dissect distally in the same plane. A knife is used to perform a high vastus-splitting, medial parapatellar arthrotomy. Pickups and scissors are then used to perform a partial medial synovectomy, and electrocautery is used to perform a medial peel. As the procedure progresses further medial, the infrapatellar fat pad is excised, followed by the anterior femoral synovial tissue. The surgeon then cuts through the anterior cruciate ligament footprint and origin with the knee flexed before sawing through the tibial spines to decrease the height of the tibial bone block. To prepare the femur, a step drill is inserted into the femoral canal, and the intramedullary alignment guide is placed with the distal femoral cutting guide set to 5° of valgus. The distal femoral cutting guide is then pressed firmly against the distal femur, making sure that the medial side is touching bone, and threaded pins are ","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex M Meyer, Benjamin W Hoyt, Temitope Adebayo, Dean C Taylor, Jonathan F Dickens
{"title":"Open Bankart Repair with Subscapularis Split.","authors":"Alex M Meyer, Benjamin W Hoyt, Temitope Adebayo, Dean C Taylor, Jonathan F Dickens","doi":"10.2106/JBJS.ST.23.00050","DOIUrl":"https://doi.org/10.2106/JBJS.ST.23.00050","url":null,"abstract":"<p><strong>Background: </strong>Anterior shoulder dislocations are a common injury, especially in the young, active, male population<sup>1</sup>. Soft-tissue treatment options for shoulder instability include arthroscopic or open Bankart repair, with open Bankart repair historically having lower rates of recurrence and reoperation, faster return to activity<sup>2-4</sup>, and a similar quality of life compared with arthroscopic repair<sup>5</sup>. More recent literature has suggested similar recurrence rates between arthroscopic and open procedures<sup>6</sup>. However, open Bankart repair may be indicated in cases of recurrent instability, especially if the patient participates in high-risk sports, because open repair can provide more capsular shift through the use of extra-capsular knots<sup>7</sup>. Performing a subscapularis split decreases the likelihood of subscapularis tendon avulsion following subscapularis tendon tenotomy and subsequent repair, as has been described in the literature<sup>8</sup>.</p><p><strong>Description: </strong>Indications for open Bankart repair include failure of arthroscopic Bankart repair, multiple dislocations, with subcritical bone loss. This surgical technique is performed via the deltopectoral approach. The subscapularis tendon is exposed and \"spared\" by splitting the fibers with use of a longitudinal incision between the upper 2/3 and lower 1/3 of the subscapularis. We begin the split medially near the myotendinous junction. Because the subscapularis becomes increasingly difficult to separate from the capsule as it tracks laterally, a RAY-TEC sponge is utilized to bluntly dissect. A T-shaped laterally based capsulotomy is made to expose the glenohumeral joint. The vertical aspect is made first, followed by the horizontal aspect from lateral to medial, extending to the labrum. A Fukuda retractor is placed through the split to hold the humeral head laterally. The labrum is elevated, and the glenoid is prepared with rasp. Then labrum is repaired with knotted suture anchors until it is secure. One anchor is utilized for each \"hour\" of the clock face, with a minimum of 3 anchors. The anchors are placed on the articular margin of the glenoid. Sutures are passed from the anchor through the capsule and tied outside the capsule. The capsulotomy is then repaired with use of a suture. The suture is utilized to pull the inferior portion superiorly. The inferior portion is taken superiorly, and the superior leaflet is imbricated over the top. Finally, an examination is performed to ensure that the humeral head can be translated to but not over the anterior and posterior glenoid rims. No repair of the subscapularis tendon insertion is required. The incision is closed with deep dermal and subcuticular suture.</p><p><strong>Alternatives: </strong>Nonoperative treatment options include rotator cuff and periscapular strengthening or immobilization. Operative treatment options include open Bankart repair with subscapularis ten","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392470/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicole L Levine, William C Eward, Brian Brigman, Alan Alper Sag, Julia D Visgauss
{"title":"Tripod Fixation of Periacetabular Metastatic Lesions Using the IlluminOss Device.","authors":"Nicole L Levine, William C Eward, Brian Brigman, Alan Alper Sag, Julia D Visgauss","doi":"10.2106/JBJS.ST.23.00070","DOIUrl":"https://doi.org/10.2106/JBJS.ST.23.00070","url":null,"abstract":"<p><strong>Background: </strong>Percutaneous tripod fixation of periacetabular lesions is performed at our institution for patients with metastatic bone disease and a need for quick return to systemic therapy. We have begun to use the IlluminOss Photodynamic Bone Stabilization System instead of the metal implants previously described in the literature because of the success of the IlluminOss implant in fixing fragility fractures about the pelvis.</p><p><strong>Description: </strong>At our institution, the procedure is performed in the interventional radiology suite in order to allow for the use of 3D radiographic imaging and vector guidance systems. The patient is positioned prone for the transcolumnar PSIS-to-AIIS implant and posterior column/ischial tuberosity implant or supine for the anterior column/superior pubic ramus implant. Following a small incision, a Jamshidi needle with a trocar is utilized to enter the bone at the chosen start point. A hand drill is utilized to advance the Jamshidi needle according to the planned vector; alternatively, a curved or straight awl can be utilized. The 1.2-mm guidewire is placed and reamed. We place both the transcolumnar and posterior column wires at the same time to ensure that there is no interference. The balloon catheter for the IlluminOss is assembled on the back table and inserted according to the implant technique guide. The balloon is inflated and observed on radiographs in order to ensure that the cavity is filled. Monomer is then cured, and the patient is flipped for the subsequent implant. Following placement of the 3 IlluminOss devices, adjunct treatments such as cement acetabuloplasty or cryoablation can be performed.</p><p><strong>Alternatives: </strong>Alternative treatments include traditional open fixation of impending or nondisplaced acetabular fractures in the operating room, or percutaneous implant placement in the operating room. Implant placement may be performed with the patient in the supine, lateral, or prone position, depending on surgeon preference. Alternative implants include standard metal implants such as plates and screws, or cement augmentation either alone or with percutaneous screws. Finally, ablation alone may be an alternative option, depending on tumor histology.</p><p><strong>Rationale: </strong>Open treatment of acetabular fractures is a more morbid procedure, given the larger incision, increased blood loss, longer time under anesthesia, and increased length of recovery. Percutaneous fixation may be performed in either the operating room or interventional radiology suite, depending on the specific equipment setup at an individual institution. At our institution, we prefer utilizing the interventional radiology suite as it allows for more precise implant placement through the use of an image-based vector guidance system and 3D fluoroscopy to accurately identify safe corridors. The use of percutaneous fixation allows for faster recovery and earlier return to systemi","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11392467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142298049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Túlio Vinícius de Oliveira Campos, Igor Guedes Nogueira Reis, Santiago Enrique Sarmiento Molina, Gustavo Scarpelli Martins da Costa, André Guerra Domingues, Paulo de Tarso Cardoso Gomes, Marco Antônio Percope de Andrade
{"title":"Off-Label Use of Buttress Calcaneal Plate in Medial Distal Femoral Fracture to Augment Internal Fixation.","authors":"Túlio Vinícius de Oliveira Campos, Igor Guedes Nogueira Reis, Santiago Enrique Sarmiento Molina, Gustavo Scarpelli Martins da Costa, André Guerra Domingues, Paulo de Tarso Cardoso Gomes, Marco Antônio Percope de Andrade","doi":"10.2106/JBJS.ST.23.00088","DOIUrl":"10.2106/JBJS.ST.23.00088","url":null,"abstract":"<p><strong>Background: </strong>High-energy traumatic fractures represent a challenge for orthopaedic surgeons because there are a great variety of morphologic patterns and associated injuries<sup>1</sup>. Although the incidence is higher in developing countries, these fractures pose a major financial burden all over the world because of their considerable hospital length of stay, time away from work, rate of failure to return to work, complications, and cost of treatment<sup>2-4</sup>. Since the fracture patterns are so variable, some cases may have a lack of available specific osteosynthesis implants, despite recent advancements in implant engineering<sup>5</sup>. However, experienced surgeons are capable of using their knowledge and creativity to treat challenging lesions with use of preexisting plates while following the principles of fracture fixation and without compromising outcomes. In 2012, Hohman et al. described for the first time the use of a calcaneal plate to treat distal femoral fractures<sup>6</sup>. In 2020, Pires et al. further expanded the indications for use of a calcaneal plate<sup>5</sup>. This technical trick is widely utilized in our trauma center, especially in comminuted fractures around the knee. The present video article provides a stepwise description of the off-label use of a calcaneal plate in a medial distal femoral fracture.</p><p><strong>Description: </strong>The key principles of this procedure involve following common fundamentals during open reduction and internal fixation, approaching the fracture, preserving soft-tissue attachments of the comminution, and reducing the main fragments. Afterwards, the off-label use of a calcaneal plate adds the special feature of being able to contain fracture fragments with plate contouring. If necessary and if osseous morphology allows, bone grafting through the plate may also be performed.</p><p><strong>Alternatives: </strong>Multiple fixation implants can be utilized in medial distal femoral fractures. Surgeon-contoured plates (i.e., locking compression plates or low-contact dynamic compression plates), multiple mini-fragment plates, cortical screws alone, cannulated cancellous screws alone, or proximal humeral plates are among the alternatives<sup>5-9</sup>. However, the lack of specific implants for fixation of fractures involving the medial femoral condyle is notable, even in developed countries<sup>10</sup>.</p><p><strong>Rationale: </strong>The small-fragment calcaneal plate is a widely available and cheaper implant compared with locking compression plates, which is especially important in developing countries. Additionally, this plate has a lower profile, covers a greater surface area, and allows multiple screws in different planes and directions. The use of this plate represents a great technical trick for surgeons to contain comminution.</p><p><strong>Expected outcomes: </strong>Patient education regarding fracture severity is mandatory, and it is important to high","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11346833/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robot-Assisted Patellofemoral Arthroplasty.","authors":"Gloria Coden, Lauren Schoeller, Eric L Smith","doi":"10.2106/JBJS.ST.23.00042","DOIUrl":"10.2106/JBJS.ST.23.00042","url":null,"abstract":"<p><strong>Background: </strong>Patellofemoral arthroplasty is indicated in patients with isolated patellofemoral arthritis in whom nonoperative treatment has failed<sup>2</sup>. The goal of the presently described procedure is to provide relief from patellofemoral arthritis pain while maintaining native knee kinematics<sup>2</sup>.</p><p><strong>Description: </strong>Patient radiographs are carefully reviewed for isolated patellofemoral arthritis in order to determine the appropriateness of robotic-assisted patellofemoral arthroplasty. Magnetic resonance imaging can be performed preoperatively to help confirm isolated patellofemoral arthritis. We perform this procedure with use of the MAKO Surgical Robot (Stryker). Preoperative computed tomography is performed to plan the bone resection, the size of the implant, and the positioning of the device. The steps of the procedure include (1) medial parapatellar arthrotomy, (2) intraoperative inspection to confirm isolated patellofemoral arthritis, (3) patellar resurfacing, (4) placement of optical arrays and trochlear registration, (5) trochlear resection, (6) trialing of implants, (7) removal of the optical array, (8) impaction of final implants, (9) confirmation of appropriate patellar tracking, and (10) closure.</p><p><strong>Alternatives: </strong>Alternatives to patellofemoral arthroplasty include standard nonoperative treatment, bicompartmental arthroplasty, total knee arthroplasty, tibial tubercle osteotomy, partial lateral facetectomy, and arthroscopy<sup>2</sup>.</p><p><strong>Rationale: </strong>Patellofemoral arthroplasty is indicated in patients with isolated patellofemoral arthritis in whom nonoperative treatment has failed<sup>2</sup>. Patellofemoral arthroplasty may be superior to total knee arthroplasty because it helps treat pain that affects patient quality of life and activities of daily living while also preserving greater tibiofemoral bone stock<sup>2</sup>. We recommend against performing patellofemoral arthroplasty in patients with arthritis of the tibiofemoral joints<sup>2</sup>.</p><p><strong>Expected outcomes: </strong>In properly selected patients, outcomes include improvement in patient pain and function<sup>1</sup>. One study found that robotic-assisted patellofemoral arthroplasty may result in improved patellar tracking compared with non-robotic-assisted patellofemoral arthroplasty<sup>1</sup>; however, functional outcomes were found to be similar between procedures, and data for all non-robotic-assisted controls were retrospectively captured<sup>1</sup>.</p><p><strong>Important tips: </strong>Confirm isolated patellofemoral arthritis on radiographs and/or magnetic resonance imaging.Review the preoperative plan for appropriate positioning of the trochlear implant.○ Confirm coverage of the trochlear groove.○ Avoid medial overhang.○ Avoid lateral overhang.○ Avoid anterior femoral notching.○ Avoid impingement of the trochlear component into the notch.○ Avoid excessive promine","PeriodicalId":44676,"journal":{"name":"JBJS Essential Surgical Techniques","volume":"14 3","pages":""},"PeriodicalIF":1.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335334/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}