{"title":"RETRACTED: Modeling Tire Tread Features","authors":"M. D. Bolzon","doi":"10.4271/06-13-01-0001","DOIUrl":"https://doi.org/10.4271/06-13-01-0001","url":null,"abstract":"This study details an investigation into the accuracy of a recently proposed tire rotation simulation approach, termed the \"MRFg\" method. Physical experiments and computational fluid dynamics (CFD) simulations were conducted on a sedan-type passenger vehicle with various tire treads and rims. Furthermore, the effects of the wind tunnel geometry on the method's accuracy was investigated. The experimental data consisted of drag coefficients, front and rear lift coefficients, base and door surface pressures, and wake surveys at various planes around the wheels. Overall, a comprehensive set of validation data was taken. The CFD simulations were transient, and the geometry closely replicated the experimental geometry, including the tires' deformations. Generally, the MRFg method predicted the effects of the various tread patterns on the drag coefficient to within four counts. Some outliers occurred. The MRFg method predicted some of the flowfield trends and magnitudes very well, but not others. The inclusion of the wind tunnel geometry significantly increased the accuracy of the methodology.","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42226701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Reliability of Power Distribution System and Improvement Options at Awash7 kilo Substation, Ethiopia","authors":"Jemal Mohammed Amin","doi":"10.37532/JEEET.2020.9(4)E.178","DOIUrl":"https://doi.org/10.37532/JEEET.2020.9(4)E.178","url":null,"abstract":"This paper presents a study of reliability of power distribution system and improvement options at Awash7 kilo substation in Ethiopia. Basically, power distribution reliability has been a major challenge in Awash7 kilo city. The existing substation has encountered frequent and long power interruptions problems. The interruptions are caused mainly by the short circuit (SC) and earth fault (EF). There are also planned outages for operation and maintenance purpose. Thus, the objective of the study is to assess the reliability of the existing distribution system and suggest solutions for reliability improvement in heuristic techniques. To limit the scope of the study, 15 kV Awash7 kilo city feeder of the substation has been chosen for the reliability improvement measures. In the study, four different mitigation scenarios have been assessed using the heuristic method to improve the system reliability. From the mitigation scenarios with the lowest SAIDI, SAIFI and Expected Energy Not Supplied (EENS) has been selected as an optimal one. The simulation results have been done with the help of Electrical Transient Analysis Program (ETAP 16.0) software. The result of this study reveals that the overall reliability of Awash7 kilo city feeder has been improved by 86%, 85.4% and 92.94% for SAIFI, SAIDI, and EENS respectively as compared with the existing system by incorporating a mitigation technology in to the network model. The economic analysis shows that the selected solution results in a cost saving of 20,229.47 USD per year from the unsold energy of one feeder only with three years payback period investment for the implementation of the reliability mitigation technology.","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78742487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Simulation of Half Wave-dipole Antenna for LTE Applications Using CST microwave Studio","authors":"Mohammed Mynuddin","doi":"10.37532/JEEET.2020.9(4)E.175","DOIUrl":"https://doi.org/10.37532/JEEET.2020.9(4)E.175","url":null,"abstract":"One of the most important and widely used Radio frequency (RF) antennas is the dipole antenna. This is commonly used on its own and is also integrated into many other prototypes of the RF antenna, where it is the guiding factor for the antenna. An effort has been made in this project to study the latest half wave dipole antenna for LTE Applications. The dipole antenna, which is nearly one-half wavelength long, is known as the half-wave dipole antenna. The antenna was designed for resonating at the frequency of 2.6 GHz. For the simulation and design calculations CST is used. In this project various factors of antenna such as the return loss, standing wave ratio from Smith charts, Real power Vs Frequency, VSWR, E-field and H-field distribution, gain and radiation pattern are also evaluated.","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83215585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of Vibration Based Wide-Band Electromagnetic Energy Harvesters","authors":"H. Khan","doi":"10.37532/JEEET.2020.9(4)E.177","DOIUrl":"https://doi.org/10.37532/JEEET.2020.9(4)E.177","url":null,"abstract":"Vibration based electromagnetic energy harvesters (VEMEHs) for powering wireless sensor nodes (WSNs) and low power devices has got enormous research interests as alternative source of power. One of the prime limitations to the application of these harvesters as a replacement to battery systems is their dependency on the limited range of operating frequencies. This paper highlights the current advancements in the area of wide-band VEMEHs. All such VEMEHs have been studied and reported based on their range of operating frequencies, frequency bandwidth, overall volume, output voltage, the value of available output power, power density and the level of vibrations these harvesters are subjected to. Moreover the reported VEMEHs are categorized on the basis of their operating mechanism i.e either resonant or non-resonant. The main focus over here is the operating range of frequencies and the frequency bandwidth where the harvester is capable of producing adequate amount of output power which could be used for operating remote WSNs. The reported VEMEHs include harvesters with a minute volume of 0.032 cm3 to as large as approx 1600 cm3. When compared on the basis of output voltage, the reported VEMEHs could produce output voltage from 0.13 mV to as high as 5700 mV. Similarly the reported VEMEHs are generating output power from 0.00096 μW to 74000 μW. The reported VEMEHs are having power densities in the range of 0.50 x 10-6 μW/ cm3 to1073 μW/ cm3. The power per acceleration of the reported VEMEHs is in the range of 16.012 x 10 -6 μW/g to 129824 μW/g. Moreover the reported VEMEHs are having power density per acceleration in the range of 0.500 x 10-6 μW/g.cm3 to 1877 μW/g.cm3. Based on the overall device’s size and resultant output power, a 1 cm³ harvester having an average power output of 0.75 μW to a harvester of 68.96 cm³ with a peak output power of 74 mW have been reported in this literature. Comparison has been made on the basis of operating frequency range, frequency bandwidth, device size, output power, acceleration of operation, power per acceleration and power densities of the reported wide-band electromagnetic energy harvesters (EMEHs).","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79283666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Electrical Power Disturbances in Distribution and Industrial Systems","authors":"D. Abraham, oussou","doi":"10.37532/JEEET.2020.9(4)E.176","DOIUrl":"https://doi.org/10.37532/JEEET.2020.9(4)E.176","url":null,"abstract":"The objective of this study is to clearly analyse by identifying and providing specifications on each disturbance. The main targets are the study of faults that suddenly happen on wires which supply loads, and the survey of detrimental effect coming from the load especially common loads used in industries. Simulation results were presented to illustrate analysis of these disturbances on a Distribution Line network. For signle-phase earthing fault model, the results show the duration of the voltage sag of 90 ms with the magnitudes of 0 kV, 30.97 kV and 30.98 kV respectively for Va, Vb and Vc. For phase to phase fault model, the duration is around 85 ms with Va = 21.3 kV and Vb=Vc= 0kV. When using non-linear loads, the obtained THD varies from 32.10 % to 44.32 % and the total demand distortion (TDD) from 91.42% to 95.21 %.","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90664113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyberattacks and Countermeasures for Intelligent and Connected Vehicles","authors":"Feng Luo, Shuo Hou","doi":"10.4271/07-12-01-0005","DOIUrl":"https://doi.org/10.4271/07-12-01-0005","url":null,"abstract":"","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47411528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy-Management Strategy for Four-Wheel Drive Electrohydraulic Hybrid System with Optimal Comprehensive Efficiency","authors":"Yang Yang, Ke Lu, Chunyun Fu","doi":"10.4271/07-12-01-0004","DOIUrl":"https://doi.org/10.4271/07-12-01-0004","url":null,"abstract":"","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41668541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Comprehensive Data Reduction Algorithm for Automotive Multiplexing","authors":"Aliakbar A. Baldiwala, D. Necsulescu","doi":"10.4271/07-12-01-0002","DOIUrl":"https://doi.org/10.4271/07-12-01-0002","url":null,"abstract":"","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45879224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Relationship between Jitter variance, Lock time and Phase noise of a second-order PLL.","authors":"D. Mazumdar, G. Kadambi, Y. Vershinin","doi":"10.4172/2325-9833.1000172","DOIUrl":"https://doi.org/10.4172/2325-9833.1000172","url":null,"abstract":"This paper covers analytical relationships between phase noise, lock time and jitter variance. An expression is derived for Lock time in terms phase margin. Analytical expressions have been derived in this paper for the variation of Lock time with respect to Phase Margin and lock time with respect to its damping coefficient. Analytical expressions are derived for the jitter variance with respect to the phase margin of a second-order PLL. Analytical expressions are also derived for the derivative of jitter variance of a second-order PLL with respect to its phase margin. The jitter variance is plotted separately for time varying part of the jitter variance and time invariant part pf the jitter variance.","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81873689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Esa, Othman Es, M. Ezz-eldin, H. Taha, Walaa El-kattan
{"title":"Modified Cable Insulation Characteristics Using Nano Composites for the Nuclear Power Plant","authors":"S. Esa, Othman Es, M. Ezz-eldin, H. Taha, Walaa El-kattan","doi":"10.4172/2332-0796.1000298","DOIUrl":"https://doi.org/10.4172/2332-0796.1000298","url":null,"abstract":"Nowadays, The Nuclear Power Plant (NPP) Lifetime can be extended to around 80 Years; This Is Assist to Recommend the Modifications Some Properties of Polymeric Cross Linked Polyethylene (XLPE) Cable Insulation. This Work is A Laboratory Implementing the Nano-fillers as Silicon Dioxide (Sio2) and Clay to Enhance Cable Insulation. The Volume Resistivity, Capacitance, Dielectric Loss, Tensile Strength and Elongation Properties Were Tested and Measurement for the Nanorized Samples. Furthermore, These Measurements Have Been Carried Out for the (XLPE) with Modified XLPE/Sio2 and XLPE/Clay, at Additive Concentration of 1, 2.5, 4 and 5 Weight Percentage (Wt%). The Officially Documented Results Have Been Provided Much Better Cable Electrically Insulation and Mechanically Profile. A 205% and 189% for Volume Resistivity and Instance were improved for The XLPE/Sio2 and XLPE/Clay Respectively, and The Analytical Calculations were in Agreement with the Experimental Results.","PeriodicalId":44634,"journal":{"name":"SAE International Journal of Passenger Cars-Electronic and Electrical Systems","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84183886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}