{"title":"Optimization of Temporary Plugging Parameters Under Rough Fractures","authors":"Lishan Yuan, Fu-jian Zhou, Ben Li, Junjie Gao, Caizhong Wang, Yanxin Tan, Jianbo Huang","doi":"10.1115/omae2019-95748","DOIUrl":"https://doi.org/10.1115/omae2019-95748","url":null,"abstract":"\u0000 Temporary-plugging-and-diverting (TPD) fracturing technology is widely used in the development of the unconventional reservoir. The operational procedure of temporary plugging and the size and combination of diverters are very much concerned by field engineers. This study compares different pumping procedure of diverters and optimizes the combination and pumping rate of diverters under the different width of the fracture. The experimental method is based on a simulated fracture apparatus, which is manufactured by the 3D printing technology. The surface morphology of the fracture is obtained through a 3D scanning of a fracture. The experimental procedure is pumping the carrier liquid and diverter mixtures into the fracture while recording pumping pressure and the outlet volume of carrier fluid. The fracture plugging efficiency was evaluated through the recorded parameters. The diverter concentration and composition were optimized at a wide range of fracture width (1 mm to 4 mm). Low the diverter concentration could help to reduce the operational risk of the diversion. Under the low concentration of the diverters, the plugging mechanism is that the large particle diverters bridge in the fracture due to the fracture tortuosity and roughness; the smaller particle and fiber diverters then fill the voids of the large particles and form a strong and low permeable diverter pack. The results indicate that pumping the mixture particle and fiber diverters are more beneficial to plug the fracture than pumping them separately and sequentially. High particle concentration has a two-sided effect, which leads to the existence of an optimal fiber-to-particle ratio. The concentration of diverters could decrease when the size of diverters is increased. At a constant fracture width, higher pumping rates can help to temporarily plug the fracture more efficiently.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133380476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modelling of the Movement of a Prolate Particle in the Steady State Flow of a Non-Newtonian Fluid in an Inclined Annulus With Inner String Rotation","authors":"E. Cayeux","doi":"10.1115/omae2019-95049","DOIUrl":"https://doi.org/10.1115/omae2019-95049","url":null,"abstract":"\u0000 The determination of the slip velocity, or whether a solid particle will sediment, during its transport is of prime importance for hole cleaning evaluations during drilling operations. Yet, this task is complexified by the asymmetry of the annulus when the central pipe axis does not coincide with the borehole central line and when the inner string rotates, especially since drilling fluids typically follow a yield stress power law rheological behavior.\u0000 This paper describes the modelling of the movement of a particle in such conditions yet with the following simplifications: the inner tube is eccentric but has a uniform movement, the shape of the particle is assimilated to a prolate, the change of shear rates in the fluid around the slipping particle is neglected and collisions between particles are not considered. Otherwise, gravitational effects are incorporated by accounting for the mass density difference between the particle and the surrounding fluid mixture and by considering the borehole inclination. The particle spin is also estimated as it plays an important role in the determination of the drag and lift forces.\u0000 The solution to the differential equations that describe the time evolution of the position and orientation of the particle, depend largely upon the initial conditions. Therefore, an ensemble of boundary conditions is generated at a starting cross-section along the annulus and the resulting particle trajectories are estimated. It is then possible to estimate a probabilistic slip velocity for particles of the considered dimensions, far away from the entrance region. This probabilistic approach allows to define a critical transport fluid velocity as the lower limit of the bulk fluid velocity by which no particle risk to settle. Similarly, one can define a critical settling fluid velocity as the upper limit of the bulk fluid velocity where every particle will sediment regardless of the initial conditions.\u0000 With the described modelling of the particle movement and its associated statistical methods, it is possible to quantitatively estimate the spatial distribution of particles in any cross-section. For those particles that get trapped between the tool-joint and the borehole, it is then possible to estimate their size reduction by grinding, resulting from the rotation of the tool-joint on the borehole wall. The grinding process impacts the particle size distribution passed a tool-joint. By applying this method iteratively up to the annulus outlet, it is possible to estimate the particle size distribution of the drill-cuttings when they arrive at the shale-shakers.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129509321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Babak Ommani, Petter A. Berthelsen, H. Lie, Vegard Aksnes, G. Løland
{"title":"Hydrodynamic Modelling and Estimating Response of Glacial Ice Near a Drilling Rig","authors":"Babak Ommani, Petter A. Berthelsen, H. Lie, Vegard Aksnes, G. Løland","doi":"10.1115/omae2019-95798","DOIUrl":"https://doi.org/10.1115/omae2019-95798","url":null,"abstract":"\u0000 Impact scenarios involving a typical drilling rig and glacial ice are studied. The goal is to better identify the important physical effects in modelling the dynamics of glacial ice in presence of waves and a floating platform, whilst improving simulation tools to capture the location and energy of possible collisions. A state-of-the-art numerical model of a typical semi-submersible is developed and calibrated with model tests to represent the drilling rig. A systematic incremental approach is adopted to model the dynamics of glacial ice. Long wave approximation, nonlinear excitation and restoring forces, interaction forces with the semi-submersible, and viscous forces due to flow separation are among the models which are considered step by step. The sensitivity of the resulted collision scenario to the modelling choices is investigated. The possibility of impact with columns, pontoons, and risers are particularly studied. Based on the obtained results, recommendations are made for modelling of glacial ice dynamics in presence of a floating platform.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133602837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-Time Measurement of Eccentricity in Primary Cementing of Oil and Gas Wells","authors":"A. Maleki, I. Frigaard","doi":"10.1115/omae2019-95415","DOIUrl":"https://doi.org/10.1115/omae2019-95415","url":null,"abstract":"\u0000 We propose a new method to measure eccentricity of the annulus in real-time during primary cementing. Our methodology is based on seeding the displacing fluids with neutrally buoyant particles. The process of seeding can happen by a specially designed bottom plug that releases a particle every few seconds. Particles at different azimuthal position experience a different axial velocity, because of the eccentricity of annulus. We infer the local velocity of the fluids by tracking the trajectories of particles and correlate it to the local eccentricity of the annulus. We show that this methodology allows us to find an axial profile of eccentricity along the well, and helps to identify geometrical irregularities, such as washouts, along the annulus.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"67 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114425517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Next Generation Well Design and Integrity Digital Tools: Boosting Drilling Systems Automation (DSA)","authors":"B. Brechan, S. Dale, S. Sangesland","doi":"10.1115/omae2019-95995","DOIUrl":"https://doi.org/10.1115/omae2019-95995","url":null,"abstract":"\u0000 The first of the next generation applications for well planning and operational support is under development. All aspects of construction, integrity, intervention and final plugging of wells are supported and fully automated into digital programs and procedures. Expanding the scope of software support entails a change from current practice of simulating all activity upfront to keep the model active and updated to supply all integrity data through production and final plugging of the well.\u0000 The software is built to carry executable experience. These “digital experiences” range from the single event type often noted during operations, to complex sets of instructions in governing documentation. Experiences act as rules for how the software select methods outlined in activity plans and how these plans are executed by the equipment on drill floor. Any activity plan, e.g. drilling, completion, intervention or plug and abandonment (P&A), will be established using the entire company portfolio of experience regardless of the capacity and experience of the planning team.\u0000 Engineers working with the next generation software will focus on ensuring the quality of the produced digital procedures. The software will handle administrative routines, such as invoicing and logistics, which will free up capacity for engineers. The user threshold of the next generation software will be low for any person familiar with the daily operational reporting system.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131561170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rheology of Brine-Based Fuzzy-Ball Drilling Fluids in Deepwater Drilling","authors":"Zhaochuan Li, Lihui Zheng, Panfeng Wei, Xiaojuan Dai, Weian Huang","doi":"10.1115/omae2019-96094","DOIUrl":"https://doi.org/10.1115/omae2019-96094","url":null,"abstract":"\u0000 In deepwater drilling, the rheology of traditional drilling fluid is uncontrollable since the fluid usually mixes with brine and encounters low temperature. A solution may be to use the newly designed brine-based fuzzy-ball drilling fluids (BFDFs) since these have a well-adapted rheology under high salinity and low temperature condition. This has the potential to make drilling safer and more efficient.\u0000 In this experiment, the rheological properties of BFDFs under test conditions were characterized with a rheometer by varying salinity (2 to 20 mass%) and temperature (4 to 80 °C). The rheological parameters considered are apparent viscosity (AV), plastic viscosity (PV), yield point (YP), and θ6 reading. To characterize the magnitudes of changes of the rheological parameters and their low temperature dependence, their ratios at 4 and 25 °C, and 4 and 80 °C were calculated.\u0000 The results showed that the apparent viscosity (AV), the plastic viscosity (PV), the yield point (YP), and θ6 reading of BFDFs increased slightly with the decrease of salinity and temperature. The ratios of rheological parameters at 4 and 25 °C were close to unity, while the ratios at 4 and 80 °C were about two. The flow behavior of BFDFs under high salinity and low temperature condition was stable. Therefore, brine could be used as the base fluid for BFDFs. Theoretically, the flow behavior of BFDFs under low temperature condition seems to follow the Herschel-Bulkley model. Practically, the tests indicated that the BFDFs possess a strong tolerance to sandstone cuttings and Cabentonite, an excellent inhibitive property to shaly cuttings, weak corrosive characteristics against N80 casing steel, excellent lubricity properties, and remarkable biodegradability.\u0000 In summary, the empirical results showed that the newly designed fuzzy-ball working fluid can use brine instead of fresh water as based fluid and maintain remarkable properties under high salinity and low temperature condition. Properties of BFDFs could basically satisfy the requirement of deepwater drilling work.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129957636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficiency Assessment of the Composite Materials Repair Systems Intended for Corrosion Damaged Pipelines","authors":"A. Dumitrescu, A. Diniță","doi":"10.1115/omae2019-96279","DOIUrl":"https://doi.org/10.1115/omae2019-96279","url":null,"abstract":"\u0000 This paper presents the results of the research work carried out by the authors in order to evaluate the efficiency of the composite material wraps/sleeves (made of a polymeric matrix and reinforcing fabric) used to repair steel pipelines carrying hydrocarbons upon which local metal loss defects (generated by corrosion and/or erosion processes) have been detected. The pipeline repair technologies consisting of the application of composite material wraps are perceived as being advantageous alternative solutions for substituting the conventional technologies, which require welding operations to be performed in the pipe areas with defects.\u0000 The efficiency of the composite repair systems has been investigated by assessing the reinforcement effects (the restoration level of the damaged pipe mechanical strength) generated by the applied composite wraps as a function of their geometry and mechanical properties. To that purpose, numerical models based on finite elements have been developed and certified by comparing them with the results of several experimental programs previously performed by the authors. Finite elements simulations have also been conducted in the plastic region, taking into account material non-linearity.\u0000 The calculation methods proposed in literature (among which a method previously developed by the authors) to define the composite wrap dimensions (thickness and length) for a given pipe have also been investigated and compared to our numerical results in order to select the most adequate solution for the design of the composite repair system. The optimal values for the mechanical properties of the composite material used by the repair system have also been defined.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127747620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Suranga C. H. Geekiyanage, E. Løken, D. Sui, T. Wiktorski
{"title":"Architectures and Algorithms for a Smart Drilling Robot","authors":"Suranga C. H. Geekiyanage, E. Løken, D. Sui, T. Wiktorski","doi":"10.1115/omae2019-95486","DOIUrl":"https://doi.org/10.1115/omae2019-95486","url":null,"abstract":"\u0000 Robotic drilling is likely to become a key feature of the next generations of drilling rigs and novel drilling technical solutions. We have been developing a drilling robot on a laboratory scale to run different drilling scenarios and achieve high-level performances with less or even no human intervention. In this paper, we introduce its mechanical systems, perception capabilities, data management, decision-making algorithms, and digital architecture. Results illustrate its autonomous operations, incident management capabilities, learning outcomes, improvement potential, and challenges. Lab testing and evaluation is an essential part of implementing, promoting and accelerating robotic applications of drilling automation. Our drilling robot is a useful, safe and cost-effective solution for testing, integrating and improving hardware, software, data, and digital/robotic products in a laboratory scale, before expensive full-scale testing and integration.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129219708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validation of Pack Ice Resistance in Oblique Condition by the Comparison With Ice Model Test Results","authors":"Hyunsoon Kim, E. Ozden, Jae-bin Lee","doi":"10.1115/omae2019-95689","DOIUrl":"https://doi.org/10.1115/omae2019-95689","url":null,"abstract":"\u0000 Countries around the world are increasingly interested in resource development in the Arctic due to global warming. Recently, Arctic coastal states (Russia, USA, Canada, etc.) are pursuing infrastructure construction projects for resource development in the Arctic region. Because the offshore structures in the Arctic are exposed to the sea ice, in order to ensure the safety of the structures, the calculation of the ice resistance is of paramount importance for offshore structures. In general, studies on the ice resistance have been carried out for the breaking and clearing performance of icebreakers. However, in the case of fpu (floating production unit) for resource development in the Arctic region, it is necessary to estimate the ice resistance in the oblique condition to ensure safety. Thus, despite estimation of the ice resistance in the oblique condition is significant, there has not been enough research until recently. In this paper, we suggest algorithms for estimating the ice resistance in the oblique condition. For the estimation process, an in-house code software program is used and an ice resistance estimation module is implemented for the oblique condition using empirical formula. This paper shows results of the ice resistance which was calculated in the oblique condition, and the change of the ice resistance is shown according to various oblique angles in pack ice. In addition, the results are compared to the model test result of a fpu in pack ice of 80% concentration.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"185 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115571868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Smart Communicative Cement: On the Move Towards the Future of Zonal Isolation Monitoring","authors":"Ricardo Melo, R. Eid","doi":"10.1115/OMAE2018-77215","DOIUrl":"https://doi.org/10.1115/OMAE2018-77215","url":null,"abstract":"The oil and gas industry, by default, has been pretty conservative when it relates to innovation and drastic changes in mind-set. Mainly focused on the costly drilling and completion steps, some of the “smaller” services have been ignored. As such, Repsol has decided to take a deeper look at nano and micro sensored technologies in other industries and potentially replicate some of this innovation, allowing the industry to take “a step” closer to smarter zonal isolation. In general, the industry is quite aware of well integrity issues that we face. Be it immediate (whilst drilling/completing), within the life of production or even during the abandonment phase. There are many statistics proving that on a global scale, there are well integrity and sustained casing pressure issues on about 30–60% of all drilled wells. And we can confirm that a majority of these are directly related to well-cementing, creating an immense impact(s), that can negatively influence overall HSE, loss of potential reserves and bottom line dollar-amount. The ability to take a close look at well cementing has only proven feasible in a laboratory environment, beyond that, the knowledge and prediction of the actual state of the zonal isolation has proven difficult, confusing or costly. Regardless of the improved best practices, enhanced logging tools or state-of-the-art technological advances in chemicals/systems — we still seem to have that unanswered “gap” — on what actually happened, when it happened and how to avoid it in the future. This paper describes the background, the thought process and the potential advantage of ours proposed ideology, let Alone ongoing R&D efforts to improve the cement isolation quality, measurements and real time monitoring of its properties and integrity during the well life and after abandonment by sensoring it and communicating back to surface.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115310073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}