盐水基模糊球钻井液在深水钻井中的流变性研究

Zhaochuan Li, Lihui Zheng, Panfeng Wei, Xiaojuan Dai, Weian Huang
{"title":"盐水基模糊球钻井液在深水钻井中的流变性研究","authors":"Zhaochuan Li, Lihui Zheng, Panfeng Wei, Xiaojuan Dai, Weian Huang","doi":"10.1115/omae2019-96094","DOIUrl":null,"url":null,"abstract":"\n In deepwater drilling, the rheology of traditional drilling fluid is uncontrollable since the fluid usually mixes with brine and encounters low temperature. A solution may be to use the newly designed brine-based fuzzy-ball drilling fluids (BFDFs) since these have a well-adapted rheology under high salinity and low temperature condition. This has the potential to make drilling safer and more efficient.\n In this experiment, the rheological properties of BFDFs under test conditions were characterized with a rheometer by varying salinity (2 to 20 mass%) and temperature (4 to 80 °C). The rheological parameters considered are apparent viscosity (AV), plastic viscosity (PV), yield point (YP), and θ6 reading. To characterize the magnitudes of changes of the rheological parameters and their low temperature dependence, their ratios at 4 and 25 °C, and 4 and 80 °C were calculated.\n The results showed that the apparent viscosity (AV), the plastic viscosity (PV), the yield point (YP), and θ6 reading of BFDFs increased slightly with the decrease of salinity and temperature. The ratios of rheological parameters at 4 and 25 °C were close to unity, while the ratios at 4 and 80 °C were about two. The flow behavior of BFDFs under high salinity and low temperature condition was stable. Therefore, brine could be used as the base fluid for BFDFs. Theoretically, the flow behavior of BFDFs under low temperature condition seems to follow the Herschel-Bulkley model. Practically, the tests indicated that the BFDFs possess a strong tolerance to sandstone cuttings and Cabentonite, an excellent inhibitive property to shaly cuttings, weak corrosive characteristics against N80 casing steel, excellent lubricity properties, and remarkable biodegradability.\n In summary, the empirical results showed that the newly designed fuzzy-ball working fluid can use brine instead of fresh water as based fluid and maintain remarkable properties under high salinity and low temperature condition. Properties of BFDFs could basically satisfy the requirement of deepwater drilling work.","PeriodicalId":444168,"journal":{"name":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rheology of Brine-Based Fuzzy-Ball Drilling Fluids in Deepwater Drilling\",\"authors\":\"Zhaochuan Li, Lihui Zheng, Panfeng Wei, Xiaojuan Dai, Weian Huang\",\"doi\":\"10.1115/omae2019-96094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In deepwater drilling, the rheology of traditional drilling fluid is uncontrollable since the fluid usually mixes with brine and encounters low temperature. A solution may be to use the newly designed brine-based fuzzy-ball drilling fluids (BFDFs) since these have a well-adapted rheology under high salinity and low temperature condition. This has the potential to make drilling safer and more efficient.\\n In this experiment, the rheological properties of BFDFs under test conditions were characterized with a rheometer by varying salinity (2 to 20 mass%) and temperature (4 to 80 °C). The rheological parameters considered are apparent viscosity (AV), plastic viscosity (PV), yield point (YP), and θ6 reading. To characterize the magnitudes of changes of the rheological parameters and their low temperature dependence, their ratios at 4 and 25 °C, and 4 and 80 °C were calculated.\\n The results showed that the apparent viscosity (AV), the plastic viscosity (PV), the yield point (YP), and θ6 reading of BFDFs increased slightly with the decrease of salinity and temperature. The ratios of rheological parameters at 4 and 25 °C were close to unity, while the ratios at 4 and 80 °C were about two. The flow behavior of BFDFs under high salinity and low temperature condition was stable. Therefore, brine could be used as the base fluid for BFDFs. Theoretically, the flow behavior of BFDFs under low temperature condition seems to follow the Herschel-Bulkley model. Practically, the tests indicated that the BFDFs possess a strong tolerance to sandstone cuttings and Cabentonite, an excellent inhibitive property to shaly cuttings, weak corrosive characteristics against N80 casing steel, excellent lubricity properties, and remarkable biodegradability.\\n In summary, the empirical results showed that the newly designed fuzzy-ball working fluid can use brine instead of fresh water as based fluid and maintain remarkable properties under high salinity and low temperature condition. Properties of BFDFs could basically satisfy the requirement of deepwater drilling work.\",\"PeriodicalId\":444168,\"journal\":{\"name\":\"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8: Polar and Arctic Sciences and Technology; Petroleum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在深水钻井中,传统钻井液的流变性是不可控的,因为钻井液通常与盐水混合,并且遇到低温。一种解决方案可能是使用新设计的盐水基模糊球钻井液(bfdf),因为这些钻井液在高盐度和低温条件下具有良好的流变性。这有可能使钻井更安全、更高效。在本实验中,在不同的盐度(2 ~ 20质量%)和温度(4 ~ 80℃)下,用流变仪表征了bfdf在测试条件下的流变特性。考虑的流变参数包括表观粘度(AV)、塑性粘度(PV)、屈服点(YP)和θ6读数。为了表征流变参数的变化幅度及其低温依赖性,计算了它们在4℃和25℃以及4℃和80℃时的比值。结果表明:随着矿化度和温度的降低,bfdf的表观粘度(AV)、塑性粘度(PV)、屈服点(YP)和θ6读数均略有升高;在4℃和25℃时流变参数的比值接近于1,而在4℃和80℃时流变参数的比值约为2。bfdf在高盐度和低温条件下的流动性能稳定。因此,卤水可以作为bfdf的基液。理论上,低温条件下bfdf的流动行为似乎遵循Herschel-Bulkley模型。实践试验表明,bfdf对砂岩岩屑和膨润土具有较强的耐受性,对泥质岩屑具有良好的抑制性能,对N80套管钢具有较弱的腐蚀性,具有良好的润滑性和显著的生物降解性。综上所述,实验结果表明,新设计的模糊球工作液可以用盐水代替淡水作为基液,并且在高盐度、低温条件下仍保持了显著的性能。bfdf的性能基本可以满足深水钻井作业的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheology of Brine-Based Fuzzy-Ball Drilling Fluids in Deepwater Drilling
In deepwater drilling, the rheology of traditional drilling fluid is uncontrollable since the fluid usually mixes with brine and encounters low temperature. A solution may be to use the newly designed brine-based fuzzy-ball drilling fluids (BFDFs) since these have a well-adapted rheology under high salinity and low temperature condition. This has the potential to make drilling safer and more efficient. In this experiment, the rheological properties of BFDFs under test conditions were characterized with a rheometer by varying salinity (2 to 20 mass%) and temperature (4 to 80 °C). The rheological parameters considered are apparent viscosity (AV), plastic viscosity (PV), yield point (YP), and θ6 reading. To characterize the magnitudes of changes of the rheological parameters and their low temperature dependence, their ratios at 4 and 25 °C, and 4 and 80 °C were calculated. The results showed that the apparent viscosity (AV), the plastic viscosity (PV), the yield point (YP), and θ6 reading of BFDFs increased slightly with the decrease of salinity and temperature. The ratios of rheological parameters at 4 and 25 °C were close to unity, while the ratios at 4 and 80 °C were about two. The flow behavior of BFDFs under high salinity and low temperature condition was stable. Therefore, brine could be used as the base fluid for BFDFs. Theoretically, the flow behavior of BFDFs under low temperature condition seems to follow the Herschel-Bulkley model. Practically, the tests indicated that the BFDFs possess a strong tolerance to sandstone cuttings and Cabentonite, an excellent inhibitive property to shaly cuttings, weak corrosive characteristics against N80 casing steel, excellent lubricity properties, and remarkable biodegradability. In summary, the empirical results showed that the newly designed fuzzy-ball working fluid can use brine instead of fresh water as based fluid and maintain remarkable properties under high salinity and low temperature condition. Properties of BFDFs could basically satisfy the requirement of deepwater drilling work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信