Proceedings of the forty-eighth annual ACM symposium on Theory of Computing最新文献

筛选
英文 中文
Two-source dispersers for polylogarithmic entropy and improved ramsey graphs 多对数熵和改进拉姆齐图的双源分散器
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-06-14 DOI: 10.1145/2897518.2897530
Gil Cohen
{"title":"Two-source dispersers for polylogarithmic entropy and improved ramsey graphs","authors":"Gil Cohen","doi":"10.1145/2897518.2897530","DOIUrl":"https://doi.org/10.1145/2897518.2897530","url":null,"abstract":"In his influential 1947 paper that inaugurated the probabilistic method, Erdős proved the existence of 2logn-Ramsey graphs on n vertices. Matching Erdős’ result with a constructive proof is considered a central problem in combinatorics, that has gained a significant attention in the literature. The state of the art result was obtained in the celebrated paper by Barak, Rao, Shaltiel, and Wigderson who constructed a 22(loglogn)1−α-Ramsey graph, for some small universal constant α > 0. In this work, we significantly improve this result and construct 2(loglogn)c-Ramsey graphs, for some universal constant c. In the language of theoretical computer science, this resolves the problem of explicitly constructing dispersers for two n-bit sources with entropy (n). In fact, our disperser is a zero-error disperser that outputs a constant fraction of the entropy. Prior to this work, such dispersers could only support entropy Ω(n).","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116990956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
Ramanujan coverings of graphs 图的拉马努金覆盖
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-06-08 DOI: 10.1145/2897518.2897574
Chris Hall, Doron Puder, W. Sawin
{"title":"Ramanujan coverings of graphs","authors":"Chris Hall, Doron Puder, W. Sawin","doi":"10.1145/2897518.2897574","DOIUrl":"https://doi.org/10.1145/2897518.2897574","url":null,"abstract":"Let G be a finite connected graph, and let ρ be the spectral radius of its universal cover. For example, if G is k-regular then ρ=2√k−1. We show that for every r, there is an r-covering (a.k.a. an r-lift) of G where all the new eigenvalues are bounded from above by ρ. It follows that a bipartite Ramanujan graph has a Ramanujan r-covering for every r. This generalizes the r=2 case due to Marcus, Spielman and Srivastava (2013). Every r-covering of G corresponds to a labeling of the edges of G by elements of the symmetric group Sr. We generalize this notion to labeling the edges by elements of various groups and present a broader scenario where Ramanujan coverings are guaranteed to exist. In particular, this shows the existence of richer families of bipartite Ramanujan graphs than was known before. Inspired by Marcus-Spielman-Srivastava, a crucial component of our proof is the existence of interlacing families of polynomials for complex reflection groups. The core argument of this component is taken from Marcus-Spielman-Srivastava (2015). Another important ingredient of our proof is a new generalization of the matching polynomial of a graph. We define the r-th matching polynomial of G to be the average matching polynomial of all r-coverings of G. We show this polynomial shares many properties with the original matching polynomial. For example, it is real rooted with all its roots inside [−ρ,ρ].","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122342450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Classical verification of quantum proofs 量子证明的经典验证
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-05-27 DOI: 10.1145/2897518.2897634
Zhengfeng Ji
{"title":"Classical verification of quantum proofs","authors":"Zhengfeng Ji","doi":"10.1145/2897518.2897634","DOIUrl":"https://doi.org/10.1145/2897518.2897634","url":null,"abstract":"We present a classical interactive protocol that verifies the validity of a quantum witness state for the local Hamiltonian problem. It follows from this protocol that approximating the non-local value of a multi-player one-round game to inverse polynomial precision is QMA-hard. Our work makes an interesting connection between the theory of QMA-completeness and Hamiltonian complexity on one hand and the study of non-local games and Bell inequalities on the other.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124072380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
Complexity theoretic limitations on learning halfspaces 学习半空间的复杂性理论限制
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-05-21 DOI: 10.1145/2897518.2897520
Amit Daniely
{"title":"Complexity theoretic limitations on learning halfspaces","authors":"Amit Daniely","doi":"10.1145/2897518.2897520","DOIUrl":"https://doi.org/10.1145/2897518.2897520","url":null,"abstract":"We study the problem of agnostically learning halfspaces which is defined by a fixed but unknown distribution D on Q^n X {-1,1}. We define Err_H(D) as the least error of a halfspace classifier for D. A learner who can access D has to return a hypothesis whose error is small compared to Err_H(D). Using the recently developed method of Daniely, Linial and Shalev-Shwartz we prove hardness of learning results assuming that random K-XOR formulas are hard to (strongly) refute. We show that no efficient learning algorithm has non-trivial worst-case performance even under the guarantees that Err_H(D) <= eta for arbitrarily small constant eta>0, and that D is supported in the Boolean cube. Namely, even under these favorable conditions, and for every c>0, it is hard to return a hypothesis with error <= 1/2-n^{-c}. In particular, no efficient algorithm can achieve a constant approximation ratio. Under a stronger version of the assumption (where K can be poly-logarithmic in n), we can take eta = 2^{-log^{1-nu}(n)} for arbitrarily small nu>0. These results substantially improve on previously known results, that only show hardness of exact learning.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"196 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134237645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 119
Non-malleable extractors and codes, with their many tampered extensions 不可延展性的提取器和代码,以及它们的许多被篡改的扩展
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-05-01 DOI: 10.1145/2897518.2897547
Eshan Chattopadhyay, Vipul Goyal, Xin Li
{"title":"Non-malleable extractors and codes, with their many tampered extensions","authors":"Eshan Chattopadhyay, Vipul Goyal, Xin Li","doi":"10.1145/2897518.2897547","DOIUrl":"https://doi.org/10.1145/2897518.2897547","url":null,"abstract":"Randomness extractors and error correcting codes are fundamental objects in computer science. Recently, there have been several natural generalizations of these objects, in the context and study of tamper resilient cryptography. These are seeded non-malleable extractors, introduced by Dodis and Wichs; seedless non-malleable extractors, introduced by Cheraghchi and Guruswami; and non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs. Besides being interesting on their own, they also have important applications in cryptography, e.g, privacy amplification with an active adversary, explicit non-malleable codes etc, and often have unexpected connections to their non-tampered analogues. However, the known constructions are far behind their non-tampered counterparts. Indeed, the best known seeded non-malleable extractor requires min-entropy rate at least 0.49; while explicit constructions of non-malleable two-source extractors were not known even if both sources have full min-entropy, and was left as an open problem by Cheraghchi and Guruswami. In this paper we make progress towards solving the above problems and other related generalizations. Our contributions are as follows. (1) We construct an explicit seeded non-malleable extractor for polylogarithmic min-entropy. This dramatically improves all previous results and gives a simpler 2-round privacy amplification protocol with optimal entropy loss, matching the best known result. In fact, we construct more general seeded non-malleable extractors (that can handle multiple adversaries) which were used in the recent construction of explicit two-source extractors for polylogarithmic min-entropy. (2) We construct the first explicit non-malleable two-source extractor for almost full min-entropy thus resolving the open question posed by Cheraghchi and Guruswami. (3) We motivate and initiate the study of two natural generalizations of seedless non-malleable extractors and non-malleable codes, where the sources or the codeword may be tampered many times. By using the connection found by Cheraghchi and Guruswami and providing efficient sampling algorithms, we obtain the first explicit non-malleable codes with tampering degree t, with near optimal rate and error. We call these stronger notions one-many and many-manynon-malleable codes. This provides a stronger information theoretic analogue of a primitive known as continuous non-malleable codes. Our basic technique used in all of our constructions can be seen as inspired, in part, by the techniques previously used to construct cryptographic non-malleable commitments.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"42 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128772009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 112
A deterministic almost-tight distributed algorithm for approximating single-source shortest paths 近似单源最短路径的确定性近紧分布算法
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-04-27 DOI: 10.1145/2897518.2897638
M. Henzinger, Sebastian Krinninger, Danupon Nanongkai
{"title":"A deterministic almost-tight distributed algorithm for approximating single-source shortest paths","authors":"M. Henzinger, Sebastian Krinninger, Danupon Nanongkai","doi":"10.1145/2897518.2897638","DOIUrl":"https://doi.org/10.1145/2897518.2897638","url":null,"abstract":"We present a deterministic (1+o(1))-approximation O(n1/2+o(1)+D1+o(1))-time algorithm for solving the single-source shortest paths problem on distributed weighted networks (the CONGEST model); here n is the number of nodes in the network and D is its (hop) diameter. This is the first non-trivial deterministic algorithm for this problem. It also improves (i) the running time of the randomized (1+o(1))-approximation Õ(n1/2D1/4+D)-time algorithm of Nanongkai [STOC 2014] by a factor of as large as n1/8, and (ii) the O(є−1logє−1)-approximation factor of Lenzen and Patt-Shamir’s Õ(n1/2+є+D)-time algorithm [STOC 2013] within the same running time. Our running time matches the known time lower bound of Ω(n1/2/logn + D) [Das Sarma et al. STOC 2011] modulo some lower-order terms, thus essentially settling the status of this problem which was raised at least a decade ago [Elkin SIGACT News 2004]. It also implies a (2+o(1))-approximation O(n1/2+o(1)+D1+o(1))-time algorithm for approximating a network’s weighted diameter which almost matches the lower bound by Holzer et al. [PODC 2012]. In achieving this result, we develop two techniques which might be of independent interest and useful in other settings: (i) a deterministic process that replaces the “hitting set argument” commonly used for shortest paths computation in various settings, and (ii) a simple, deterministic, construction of an (no(1), o(1))-hop set of size O(n1+o(1)). We combine these techniques with many distributed algorithmic techniques, some of which from problems that are not directly related to shortest paths, e.g. ruling sets [Goldberg et al. STOC 1987], source detection [Lenzen, Peleg PODC 2013], and partial distance estimation [Lenzen, Patt-Shamir PODC 2015]. Our hop set construction also leads to single-source shortest paths algorithms in two other settings: (i) a (1+o(1))-approximation O(no(1))-time algorithm on congested cliques, and (ii) a (1+o(1))-approximation O(no(1)logW)-pass O(n1+o(1)logW)-space streaming algorithm, when edge weights are in {1, 2, …, W}. The first result answers an open problem in [Nanongkai, STOC 2014]. The second result partially answers an open problem raised by McGregor in 2006 [sublinear.info, Problem 14].","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134041249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 106
Optimal principal component analysis in distributed and streaming models 分布式和流模型的最优主成分分析
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-04-25 DOI: 10.1145/2897518.2897646
Christos Boutsidis, David P. Woodruff, Peilin Zhong
{"title":"Optimal principal component analysis in distributed and streaming models","authors":"Christos Boutsidis, David P. Woodruff, Peilin Zhong","doi":"10.1145/2897518.2897646","DOIUrl":"https://doi.org/10.1145/2897518.2897646","url":null,"abstract":"This paper studies the Principal Component Analysis (PCA) problem in the distributed and streaming models of computation. Given a matrix A ∈ Rm×n, a rank parameter k<rank(A), and an accuracy parameter 0<ε<1, we want to output an m×k orthonormal matrix U for which ||A-UUTA||2F≤(1+ε)||A-Ak||2F where Ak∈Rm×n is the best rank-k approximation to A. Our contributions are summarized as follows: 1. In the arbitrary partition distributed model of Kannan et al. (COLT 2014), each of s machines holds a matrix Ai and A=ΣAi. Each machine should output U. Kannan et al. achieve O(skm/ε)+poly(sk/ε) words (of O(log(nm)) bits) communication. We obtain the improved bound of O(skm)+poly(sk/ε) words, and show an optimal (up to low order terms) Ω(skm) lower bound. This resolves an open question in the literature. A poly(ε-1) dependence is known to be required, but we separate this dependence from m. 2. In a more specific distributed model where each server receives a subset of columns of A, we bypass the above lower bound when A is φ-sparse in each column. Here we obtain an O(skφ/ε)+poly(sk/ε) word protocol. Our communication is independent of the matrix dimensions, and achieves the guarantee that each server, in addition to outputting U, outputs a subset of O(k/ε) columns of A containing a U in its span (that is, for the first time, we solve distributed column subset selection). Additionally, we show a matching Ω(skφ/ε) lower bound for distributed column subset selection. Achieving our communication bound when A is sparse in general but not sparse in each column, is impossible. 3. In the streaming model of computation, in which the columns of the matrix A arrive one at a time, an algorithm of Liberty (KDD, 2013) with an improved analysis by Ghashami and Phillips (SODA, 2014) achieves O(km/ε) \"real numbers\" space complexity. We improve this result, since our one-pass streaming PCA algorithm achieves an O(km/ε)+poly(k/ε) word space upper bound. This almost matches a known Ω(km/ε) bit lower bound of Woodruff (NIPS, 2014). We show that with two passes over the columns of A one can achieve an O(km)+poly(k/ε) word space upper bound; another lower bound of Woodruff (NIPS, 2014) shows that this is optimal for any constant number of passes (up to the poly(k/ε) term and the distinction between words versus bits). 4. Finally, in turnstile streams, in which we receive entries of A one at a time in an arbitrary order, we describe an algorithm with O((m+n)kε-1) words of space. This improves the O((m+n)ε-2)kε-2) upper bound of Clarkson and Woodruff (STOC 2009), and matches their Ω((m+n)kε-1) word lower bound. Notably, our results do not depend on the condition number or any singular value gaps of A.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125846163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 111
Semidefinite programs on sparse random graphs and their application to community detection 稀疏随机图上的半定程序及其在社区检测中的应用
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-04-22 DOI: 10.1145/2897518.2897548
A. Montanari, S. Sen
{"title":"Semidefinite programs on sparse random graphs and their application to community detection","authors":"A. Montanari, S. Sen","doi":"10.1145/2897518.2897548","DOIUrl":"https://doi.org/10.1145/2897518.2897548","url":null,"abstract":"Denote by A the adjacency matrix of an Erdos-Renyi graph with bounded average degree. We consider the problem of maximizing over the set of positive semidefinite matrices X with diagonal entries X_ii=1. We prove that for large (bounded) average degree d, the value of this semidefinite program (SDP) is --with high probability-- 2n*sqrt(d) + n, o(sqrt(d))+o(n). For a random regular graph of degree d, we prove that the SDP value is 2n*sqrt(d-1)+o(n), matching a spectral upper bound. Informally, Erdos-Renyi graphs appear to behave similarly to random regular graphs for semidefinite programming. We next consider the sparse, two-groups, symmetric community detection problem (also known as planted partition). We establish that SDP achieves the information-theoretically optimal detection threshold for large (bounded) degree. Namely, under this model, the vertex set is partitioned into subsets of size n/2, with edge probability a/n (within group) and b/n (across). We prove that SDP detects the partition with high probability provided (a-b)^2/(4d)> 1+o_d(1), with d= (a+b)/2. By comparison, the information theoretic threshold for detecting the hidden partition is (a-b)^2/(4d)> 1: SDP is nearly optimal for large bounded average degree. Our proof is based on tools from different research areas: (i) A new 'higher-rank' Grothendieck inequality for symmetric matrices; (ii) An interpolation method inspired from statistical physics; (iii) An analysis of the eigenvectors of deformed Gaussian random matrices.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134532879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 134
High-rate locally-correctable and locally-testable codes with sub-polynomial query complexity 具有次多项式查询复杂度的高速率局部可纠错和局部可测试代码
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-04-21 DOI: 10.1145/2897518.2897523
Swastik Kopparty, Or Meir, Noga Ron-Zewi, Shubhangi Saraf
{"title":"High-rate locally-correctable and locally-testable codes with sub-polynomial query complexity","authors":"Swastik Kopparty, Or Meir, Noga Ron-Zewi, Shubhangi Saraf","doi":"10.1145/2897518.2897523","DOIUrl":"https://doi.org/10.1145/2897518.2897523","url":null,"abstract":"In this work, we construct the first locally-correctable codes (LCCs), and locally-testable codes (LTCs) with constant rate, constant relative distance, and sub-polynomial query complexity. Specifically, we show that there exist LCCs and LTCs with block length n, constant rate (which can even be taken arbitrarily close to 1) and constant relative distance, whose query complexity is exp(Õ(√logn)) (for LCCs) and (logn)O(loglogn) (for LTCs). Previously such codes were known to exist only with Ω(nβ) query complexity (for constant β>0). In addition to having small query complexity, our codes also achieve better trade-offs between the rate and the relative distance than were previously known to be achievable by LCCs or LTCs. Specifically, over large (but constant size) alphabet, our codes approach the Singleton bound, that is, they have almost the best-possible relationship between their rate and distance. This has the surprising consequence that asking for a large-alphabet error-correcting code to further be an LCC or LTC with sub-polynomial query complexity does not require any sacrifice in terms of rate and distance! Over the binary alphabet, our codes meet the Zyablov bound. Such trade-offs between the rate and the relative distance were previously not known for any o(n) query complexity. Our results on LCCs also immediately give locally-decodable codes (LDCs) with the same parameters. Our codes are based on a technique of Alon, Edmonds and Luby. We observe that this technique can be used as a general distance-amplification method, and show that it interacts well with local correctors and testers. We obtain our main results by applying this method to suitably constructed LCCs and LTCs in the non-standard regime of sub-constant relative distance.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126494466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 73
The computational power of optimization in online learning 优化在线学习的计算能力
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-04-08 DOI: 10.1145/2897518.2897536
Elad Hazan, Tomer Koren
{"title":"The computational power of optimization in online learning","authors":"Elad Hazan, Tomer Koren","doi":"10.1145/2897518.2897536","DOIUrl":"https://doi.org/10.1145/2897518.2897536","url":null,"abstract":"We consider the fundamental problem of prediction with expert advice where the experts are “optimizable”: there is a black-box optimization oracle that can be used to compute, in constant time, the leading expert in retrospect at any point in time. In this setting, we give a novel online algorithm that attains vanishing regret with respect to N experts in total O(√N) computation time. We also give a lower bound showing that this running time cannot be improved (up to log factors) in the oracle model, thereby exhibiting a quadratic speedup as compared to the standard, oracle-free setting where the required time for vanishing regret is Θ(N). These results demonstrate an exponential gap between the power of optimization in online learning and its power in statistical learning: in the latter, an optimization oracle—i.e., an efficient empirical risk minimizer—allows to learn a finite hypothesis class of size N in time O(logN). We also study the implications of our results to learning in repeated zero-sum games, in a setting where the players have access to oracles that compute, in constant time, their best-response to any mixed strategy of their opponent. We show that the runtime required for approximating the minimax value of the game in this setting is Θ(√N), yielding again a quadratic improvement upon the oracle-free setting, where Θ(N) is known to be tight.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121509853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信