Ramanujan coverings of graphs

Chris Hall, Doron Puder, W. Sawin
{"title":"Ramanujan coverings of graphs","authors":"Chris Hall, Doron Puder, W. Sawin","doi":"10.1145/2897518.2897574","DOIUrl":null,"url":null,"abstract":"Let G be a finite connected graph, and let ρ be the spectral radius of its universal cover. For example, if G is k-regular then ρ=2√k−1. We show that for every r, there is an r-covering (a.k.a. an r-lift) of G where all the new eigenvalues are bounded from above by ρ. It follows that a bipartite Ramanujan graph has a Ramanujan r-covering for every r. This generalizes the r=2 case due to Marcus, Spielman and Srivastava (2013). Every r-covering of G corresponds to a labeling of the edges of G by elements of the symmetric group Sr. We generalize this notion to labeling the edges by elements of various groups and present a broader scenario where Ramanujan coverings are guaranteed to exist. In particular, this shows the existence of richer families of bipartite Ramanujan graphs than was known before. Inspired by Marcus-Spielman-Srivastava, a crucial component of our proof is the existence of interlacing families of polynomials for complex reflection groups. The core argument of this component is taken from Marcus-Spielman-Srivastava (2015). Another important ingredient of our proof is a new generalization of the matching polynomial of a graph. We define the r-th matching polynomial of G to be the average matching polynomial of all r-coverings of G. We show this polynomial shares many properties with the original matching polynomial. For example, it is real rooted with all its roots inside [−ρ,ρ].","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Let G be a finite connected graph, and let ρ be the spectral radius of its universal cover. For example, if G is k-regular then ρ=2√k−1. We show that for every r, there is an r-covering (a.k.a. an r-lift) of G where all the new eigenvalues are bounded from above by ρ. It follows that a bipartite Ramanujan graph has a Ramanujan r-covering for every r. This generalizes the r=2 case due to Marcus, Spielman and Srivastava (2013). Every r-covering of G corresponds to a labeling of the edges of G by elements of the symmetric group Sr. We generalize this notion to labeling the edges by elements of various groups and present a broader scenario where Ramanujan coverings are guaranteed to exist. In particular, this shows the existence of richer families of bipartite Ramanujan graphs than was known before. Inspired by Marcus-Spielman-Srivastava, a crucial component of our proof is the existence of interlacing families of polynomials for complex reflection groups. The core argument of this component is taken from Marcus-Spielman-Srivastava (2015). Another important ingredient of our proof is a new generalization of the matching polynomial of a graph. We define the r-th matching polynomial of G to be the average matching polynomial of all r-coverings of G. We show this polynomial shares many properties with the original matching polynomial. For example, it is real rooted with all its roots inside [−ρ,ρ].
图的拉马努金覆盖
设G是一个有限连通图,ρ是它的全称覆盖的谱半径。例如,如果G是k规则的,那么ρ=2√k−1。我们证明,对于每一个r,都有一个G的r覆盖(也就是r升力)其中所有的新特征值都以ρ为上界。由此可见,二分拉马努金图对每个r都有一个拉马努金r覆盖。这推广了Marcus, Spielman和Srivastava(2013)提出的r=2的情况。G的每一个r-覆盖都对应于G的边被对称群sr的元素标记。我们将这一概念推广到用不同群的元素标记边,并给出了一个保证存在拉马努金覆盖的更广泛的场景。特别地,这表明存在比以前已知的更丰富的二部拉马努金图族。受Marcus-Spielman-Srivastava的启发,我们证明的一个关键组成部分是复数反射群的交错多项式族的存在。这部分的核心论点取自Marcus-Spielman-Srivastava(2015)。我们证明的另一个重要组成部分是对图的匹配多项式的一个新的推广。我们将G的第r个匹配多项式定义为G的所有r覆盖的平均匹配多项式,并证明了该多项式与原匹配多项式具有许多相同的性质。例如,它是实根,所有的根都在[−ρ,ρ]内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信