Proceedings of the forty-eighth annual ACM symposium on Theory of Computing最新文献

筛选
英文 中文
Breaking the logarithmic barrier for truthful combinatorial auctions with submodular bidders 打破对数障碍的真实组合拍卖与子模块投标人
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2016-02-18 DOI: 10.1145/2897518.2897569
Shahar Dobzinski
{"title":"Breaking the logarithmic barrier for truthful combinatorial auctions with submodular bidders","authors":"Shahar Dobzinski","doi":"10.1145/2897518.2897569","DOIUrl":"https://doi.org/10.1145/2897518.2897569","url":null,"abstract":"We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that guarantees a non-trivial approximation ratio of O(log^2 m) [STOC'06], where m is the number of items. This was subsequently improved to O( log m log log m) [Dobzinski, APPROX'07] and then to O(m) [Krysta and Vocking, ICALP'12]. In this paper we develop the first mechanism that breaks the logarithmic barrier. Specifically, the mechanism provides an approximation ratio of O( m). Similarly to previous constructions, our mechanism uses polynomially many value and demand queries, and in fact provides the same approximation ratio for the larger class of XOS (a.k.a. fractionally subadditive) valuations. We also develop a computationally efficient implementation of the mechanism for combinatorial auctions with budget additive bidders. Although in general computing a demand query is NP-hard for budget additive valuations, we observe that the specific form of demand queries that our mechanism uses can be efficiently computed when bidders are budget additive.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128436518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
Bipartite perfect matching is in quasi-NC 拟nc中的二部完美匹配
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2016-01-23 DOI: 10.1145/2897518.2897564
Stephen A. Fenner, R. Gurjar, T. Thierauf
{"title":"Bipartite perfect matching is in quasi-NC","authors":"Stephen A. Fenner, R. Gurjar, T. Thierauf","doi":"10.1145/2897518.2897564","DOIUrl":"https://doi.org/10.1145/2897518.2897564","url":null,"abstract":"We show that the bipartite perfect matching problem is in quasi- NC2. That is, it has uniform circuits of quasi-polynomial size nO(logn), and O(log2 n) depth. Previously, only an exponential upper bound was known on the size of such circuits with poly-logarithmic depth. We obtain our result by an almost complete derandomization of the famous Isolation Lemma when applied to yield an efficient randomized parallel algorithm for the bipartite perfect matching problem.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"110 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131746955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 77
Graph isomorphism in quasipolynomial time [extended abstract] 拟多项式时间下的图同构[扩展摘要]
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-12-11 DOI: 10.1145/2897518.2897542
L. Babai
{"title":"Graph isomorphism in quasipolynomial time [extended abstract]","authors":"L. Babai","doi":"10.1145/2897518.2897542","DOIUrl":"https://doi.org/10.1145/2897518.2897542","url":null,"abstract":"We show that the Graph Isomorphism (GI) problem and the more general problems of String Isomorphism (SI) andCoset Intersection (CI) can be solved in quasipolynomial(exp((logn)O(1))) time. The best previous bound for GI was exp(O( √n log n)), where n is the number of vertices (Luks, 1983); for the other two problems, the bound was similar, exp(O~(√ n)), where n is the size of the permutation domain (Babai, 1983). Following the approach of Luks’s seminal 1980/82 paper, the problem we actually address is SI. This problem takes two strings of length n and a permutation group G of degree n (the “ambient group”) as input (G is given by a list of generators) and asks whether or not one of the strings can be transformed into the other by some element of G. Luks’s divide-and-conquer algorithm for SI proceeds by recursion on the ambient group. We build on Luks’s framework and attack the obstructions to efficient Luks recurrence via an interplay between local and global symmetry. We construct group theoretic “local certificates” to certify the presence or absence of local symmetry, aggregate the negative certificates to canonical k-ary relations where k = O(log n), and employ combinatorial canonical partitioning techniques to split the k-ary relational structure for efficient divide-and- conquer. We show that in a well–defined sense, Johnson graphs are the only obstructions to effective canonical partitioning. The central element of the algorithm is the “local certificates” routine which is based on a new group theoretic result, the “Unaffected stabilizers lemma,” that allows us to construct global automorphisms out of local information.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126996801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 631
Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors 从平方和证明的快速光谱算法:张量分解和种植稀疏向量
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-12-08 DOI: 10.1145/2897518.2897529
Samuel B. Hopkins, T. Schramm, Jonathan Shi, David Steurer
{"title":"Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors","authors":"Samuel B. Hopkins, T. Schramm, Jonathan Shi, David Steurer","doi":"10.1145/2897518.2897529","DOIUrl":"https://doi.org/10.1145/2897518.2897529","url":null,"abstract":"We consider two problems that arise in machine learning applications: the problem of recovering a planted sparse vector in a random linear subspace and the problem of decomposing a random low-rank overcomplete 3-tensor. For both problems, the best known guarantees are based on the sum-of-squares method. We develop new algorithms inspired by analyses of the sum-of-squares method. Our algorithms achieve the same or similar guarantees as sum-of-squares for these problems but the running time is significantly faster. For the planted sparse vector problem, we give an algorithm with running time nearly linear in the input size that approximately recovers a planted sparse vector with up to constant relative sparsity in a random subspace of ℝn of dimension up to Ω(√n). These recovery guarantees match the best known ones of Barak, Kelner, and Steurer (STOC 2014) up to logarithmic factors. For tensor decomposition, we give an algorithm with running time close to linear in the input size (with exponent ≈ 1.125) that approximately recovers a component of a random 3-tensor over ℝn of rank up to Ω(n4/3). The best previous algorithm for this problem due to Ge and Ma (RANDOM 2015) works up to rank Ω(n3/2) but requires quasipolynomial time.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115126972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 118
Sparsified Cholesky and multigrid solvers for connection laplacians 连接拉普拉斯算子的稀疏化Cholesky和多网格求解方法
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-12-07 DOI: 10.1145/2897518.2897640
Rasmus Kyng, Y. Lee, Richard Peng, Sushant Sachdeva, D. Spielman
{"title":"Sparsified Cholesky and multigrid solvers for connection laplacians","authors":"Rasmus Kyng, Y. Lee, Richard Peng, Sushant Sachdeva, D. Spielman","doi":"10.1145/2897518.2897640","DOIUrl":"https://doi.org/10.1145/2897518.2897640","url":null,"abstract":"We introduce the sparsified Cholesky and sparsified multigrid algorithms for solving systems of linear equations. These algorithms accelerate Gaussian elimination by sparsifying the nonzero matrix entries created by the elimination process. We use these new algorithms to derive the first nearly linear time algorithms for solving systems of equations in connection Laplacians---a generalization of Laplacian matrices that arise in many problems in image and signal processing. We also prove that every connection Laplacian has a linear sized approximate inverse. This is an LU factorization with a linear number of nonzero entries that is a strong approximation of the original matrix. Using such a factorization one can solve systems of equations in a connection Laplacian in linear time. Such a factorization was unknown even for ordinary graph Laplacians.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130003526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 156
Exact algorithms via monotone local search 精确算法通过单调局部搜索
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-12-05 DOI: 10.1145/2897518.2897551
F. Fomin, Serge Gaspers, D. Lokshtanov, Saket Saurabh
{"title":"Exact algorithms via monotone local search","authors":"F. Fomin, Serge Gaspers, D. Lokshtanov, Saket Saurabh","doi":"10.1145/2897518.2897551","DOIUrl":"https://doi.org/10.1145/2897518.2897551","url":null,"abstract":"We give a new general approach for designing exact exponential-time algorithms for subset problems. In a subset problem the input implicitly describes a family of sets over a universe of size n and the task is to determine whether the family contains at least one set. A typical example of a subset problem is Weighted d-SAT. Here, the input is a CNF-formula with clauses of size at most d, and an integer W. The universe is the set of variables and the variables have integer weights. The family contains all the subsets S of variables such that the total weight of the variables in S does not exceed W, and setting the variables in S to 1 and the remaining variables to 0 satisfies the formula. Our approach is based on “monotone local search”, where the goal is to extend a partial solution to a solution by adding as few elements as possible. More formally, in the extension problem we are also given as input a subset X of the universe and an integer k. The task is to determine whether one can add at most k elements to X to obtain a set in the (implicitly defined) family. Our main result is that a cknO(1) time algorithm for the extension problem immediately yields a randomized algorithm for finding a solution of any size with running time O((2−1/c)n). In many cases, the extension problem can be reduced to simply finding a solution of size at most k. Furthermore, efficient algorithms for finding small solutions have been extensively studied in the field of parameterized algorithms. Directly applying these algorithms, our theorem yields in one stroke significant improvements over the best known exponential-time algorithms for several well-studied problems, including d-Hitting Set, Feedback Vertex Set, Node Unique Label Cover, and Weighted d-SAT. Our results demonstrate an interesting and very concrete connection between parameterized algorithms and exact exponential-time algorithms. We also show how to derandomize our algorithms at the cost of a subexponential multiplicative factor in the running time. Our derandomization is based on an efficient construction of a new pseudo-random object that might be of independent interest. Finally, we extend our methods to establish new combinatorial upper bounds and develop enumeration algorithms.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128087914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 46
Cell-probe lower bounds for dynamic problems via a new communication model 基于新通信模型的动态问题的细胞探针下界
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-12-04 DOI: 10.1145/2897518.2897556
Huacheng Yu
{"title":"Cell-probe lower bounds for dynamic problems via a new communication model","authors":"Huacheng Yu","doi":"10.1145/2897518.2897556","DOIUrl":"https://doi.org/10.1145/2897518.2897556","url":null,"abstract":"In this paper, we develop a new communication model to prove a data structure lower bound for the dynamic interval union problem. The problem is to maintain a multiset of intervals I over [0, n] with integer coordinates, supporting the following operations: 1) insert(a, b), add an interval [a, b] to I, provided that a and b are integers in [0, n]; 2) delete(a, b), delete an (existing) interval [a, b] from I; 3) query(), return the total length of the union of all intervals in I. It is related to the two-dimensional case of Klee’s measure problem. We prove that there is a distribution over sequences of operations with O(n) insertions and deletions, and O(n0.01) queries, for which any data structure with any constant error probability requires Ω(nlogn) time in expectation. Interestingly, we use the sparse set disjointness protocol of Håstad and Wigderson to speed up a reduction from a new kind of nondeterministic communication games, for which we prove lower bounds. For applications, we prove lower bounds for several dynamic graph problems by reducing them from dynamic interval union.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123904453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Super-linear gate and super-quadratic wire lower bounds for depth-two and depth-three threshold circuits 深度二和深度三阈值电路的超线性栅极和超二次线下界
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-11-24 DOI: 10.1145/2897518.2897636
D. Kane, Ryan Williams
{"title":"Super-linear gate and super-quadratic wire lower bounds for depth-two and depth-three threshold circuits","authors":"D. Kane, Ryan Williams","doi":"10.1145/2897518.2897636","DOIUrl":"https://doi.org/10.1145/2897518.2897636","url":null,"abstract":"In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. (1) We prove that for all ε ≪ √log(n)/n, the linear-time computable Andreev’s function cannot be computed on a (1/2+ε)-fraction of n-bit inputs by depth-two circuits of o(ε3 n3/2/log3 n) gates, nor can it be computed with o(ε3 n5/2/log7/2 n) wires. This establishes an average-case “size hierarchy” for threshold circuits, as Andreev’s function is computable by uniform depth-two circuits of o(n3) linear threshold gates, and by uniform depth-three circuits of O(n) majority gates. (2) We present a new function in P based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two threshold circuits of o(n3/2/log3 n) gates, nor with o(n5/2/log7/2n) wires. (3) We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new method for analyzing random restrictions to linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131228858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 57
Lift-and-round to improve weighted completion time on unrelated machines 提升和旋转,以提高加权完成时间在不相关的机器
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-11-24 DOI: 10.1145/2897518.2897572
N. Bansal, O. Svensson, A. Srinivasan
{"title":"Lift-and-round to improve weighted completion time on unrelated machines","authors":"N. Bansal, O. Svensson, A. Srinivasan","doi":"10.1145/2897518.2897572","DOIUrl":"https://doi.org/10.1145/2897518.2897572","url":null,"abstract":"We consider the problem of scheduling jobs on unrelated machines so as to minimize the sum of weighted completion times. Our main result is a (3/2-c)-approximation algorithm for some fixed c>0, improving upon the long-standing bound of 3/2. To do this, we first introduce a new lift-and-project based SDP relaxation for the problem. This is necessary as the previous convex programming relaxations have an integrality gap of 3/2. Second, we give a new general bipartite-rounding procedure that produces an assignment with certain strong negative correlation properties.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114480695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower bound made 模拟分支程序与编辑距离和朋友:或:polylog剃是一个下界
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Pub Date : 2015-11-18 DOI: 10.1145/2897518.2897653
Amir Abboud, Thomas Dueholm Hansen, V. V. Williams, Ryan Williams
{"title":"Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower bound made","authors":"Amir Abboud, Thomas Dueholm Hansen, V. V. Williams, Ryan Williams","doi":"10.1145/2897518.2897653","DOIUrl":"https://doi.org/10.1145/2897518.2897653","url":null,"abstract":"A recent, active line of work achieves tight lower bounds for fundamental problems under the Strong Exponential Time Hypothesis (SETH). A celebrated result of Backurs and Indyk (STOC’15) proves that computing the Edit Distance of two sequences of length n in truly subquadratic O(n2−ε) time, for some ε>0, is impossible under SETH. The result was extended by follow-up works to simpler looking problems like finding the Longest Common Subsequence (LCS). SETH is a very strong assumption, asserting that even linear size CNF formulas cannot be analyzed for satisfiability with an exponential speedup over exhaustive search. We consider much safer assumptions, e.g. that such a speedup is impossible for SAT on more expressive representations, like subexponential-size NC circuits. Intuitively, this assumption is much more plausible: NC circuits can implement linear algebra and complex cryptographic primitives, while CNFs cannot even approximately compute an XOR of bits. Our main result is a surprising reduction from SAT on Branching Programs to fundamental problems in P like Edit Distance, LCS, and many others. Truly subquadratic algorithms for these problems therefore have far more remarkable consequences than merely faster CNF-SAT algorithms. For example, SAT on arbitrary o(n)-depth bounded fan-in circuits (and therefore also NC-Circuit-SAT) can be solved in (2−ε)n time. An interesting feature of our work is that we get major consequences even from mildly subquadratic algorithms for Edit Distance or LCS. For example, we show that if an arbitrarily large polylog factor is shaved from n2 for Edit Distance then NEXP does not have non-uniform NC1 circuits.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125069902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 111
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信