Breaking the logarithmic barrier for truthful combinatorial auctions with submodular bidders

Shahar Dobzinski
{"title":"Breaking the logarithmic barrier for truthful combinatorial auctions with submodular bidders","authors":"Shahar Dobzinski","doi":"10.1145/2897518.2897569","DOIUrl":null,"url":null,"abstract":"We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that guarantees a non-trivial approximation ratio of O(log^2 m) [STOC'06], where m is the number of items. This was subsequently improved to O( log m log log m) [Dobzinski, APPROX'07] and then to O(m) [Krysta and Vocking, ICALP'12]. In this paper we develop the first mechanism that breaks the logarithmic barrier. Specifically, the mechanism provides an approximation ratio of O( m). Similarly to previous constructions, our mechanism uses polynomially many value and demand queries, and in fact provides the same approximation ratio for the larger class of XOS (a.k.a. fractionally subadditive) valuations. We also develop a computationally efficient implementation of the mechanism for combinatorial auctions with budget additive bidders. Although in general computing a demand query is NP-hard for budget additive valuations, we observe that the specific form of demand queries that our mechanism uses can be efficiently computed when bidders are budget additive.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

We study a central problem in Algorithmic Mechanism Design: constructing truthful mechanisms for welfare maximization in combinatorial auctions with submodular bidders. Dobzinski, Nisan, and Schapira provided the first mechanism that guarantees a non-trivial approximation ratio of O(log^2 m) [STOC'06], where m is the number of items. This was subsequently improved to O( log m log log m) [Dobzinski, APPROX'07] and then to O(m) [Krysta and Vocking, ICALP'12]. In this paper we develop the first mechanism that breaks the logarithmic barrier. Specifically, the mechanism provides an approximation ratio of O( m). Similarly to previous constructions, our mechanism uses polynomially many value and demand queries, and in fact provides the same approximation ratio for the larger class of XOS (a.k.a. fractionally subadditive) valuations. We also develop a computationally efficient implementation of the mechanism for combinatorial auctions with budget additive bidders. Although in general computing a demand query is NP-hard for budget additive valuations, we observe that the specific form of demand queries that our mechanism uses can be efficiently computed when bidders are budget additive.
打破对数障碍的真实组合拍卖与子模块投标人
本文研究了算法机制设计中的一个核心问题:构建具有子模块投标人的组合拍卖中福利最大化的真实机制。Dobzinski, Nisan和Schapira提供了第一种保证非平凡近似比为O(log^2 m)的机制[STOC'06],其中m为项目数。随后将其改进为O(log m log log m) [Dobzinski, APPROX'07],然后再改进为O(m) [Krysta and Vocking, ICALP'12]。在本文中,我们开发了第一个打破对数障碍的机制。具体来说,该机制提供了O(m)的近似比率。与之前的结构类似,我们的机制使用多项式的许多值和需求查询,实际上为更大类别的XOS(也称为分数次加性)估值提供了相同的近似比率。我们还开发了一种计算效率高的机制,用于与预算附加投标人的组合拍卖。尽管在一般情况下,计算需求查询对于预算附加估值是np困难的,但我们观察到,当投标人是预算附加估值时,我们的机制使用的特定形式的需求查询可以有效地计算出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信