中国空间科学技术最新文献

筛选
英文 中文
DB Regulate FAK Pathway to Protect Rat BBB Dysfunction Induced by Simulated Microgravity DB调节FAK通路保护模拟微重力致大鼠血脑屏障功能障碍
4区 工程技术
中国空间科学技术 Pub Date : 2023-09-09 DOI: 10.34133/space.0071
Ranran Yan, YuShi Zhang, YongZhi Li, JiaPing Wang, Bibi Hajira, YuLin Deng, Yujuan Li
{"title":"DB Regulate FAK Pathway to Protect Rat BBB Dysfunction Induced by Simulated Microgravity","authors":"Ranran Yan, YuShi Zhang, YongZhi Li, JiaPing Wang, Bibi Hajira, YuLin Deng, Yujuan Li","doi":"10.34133/space.0071","DOIUrl":"https://doi.org/10.34133/space.0071","url":null,"abstract":"","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136107328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volcanism and Deep Structures of the Moon 火山活动和月球的深层结构
4区 工程技术
中国空间科学技术 Pub Date : 2023-01-01 DOI: 10.34133/space.0076
Jiannan Zhao, Le Qiao, Feng Zhang, Yuefeng Yuan, Qian Huang, Jianguo Yan, Yuqi Qian, Yongliao Zou, Long Xiao
{"title":"Volcanism and Deep Structures of the Moon","authors":"Jiannan Zhao, Le Qiao, Feng Zhang, Yuefeng Yuan, Qian Huang, Jianguo Yan, Yuqi Qian, Yongliao Zou, Long Xiao","doi":"10.34133/space.0076","DOIUrl":"https://doi.org/10.34133/space.0076","url":null,"abstract":"Volcanism is the most important endogenic geological process of the Moon, which is closely related to its internal structure and thermal history. Lunar volcanism is one of the most important topics for lunar science and explorations. Recent lunar orbital observations, in situ explorations, and sample return missions have returned a new generation of high-resolution datasets, which greatly enriched our knowledge of lunar volcanism. Here, we summarize recent advances in the duration and spatial distribution of lunar mare volcanism, as well as origin of volcanic landforms such as lava flows, sinuous rilles, lava tubes, domes, and cones. We proposed several outstanding problems in the study of temporal and spatial span of lunar volcanism, the formation mechanism of the varied volcanic landforms, and their relation with deep structures. To solve these problems, more in situ explorations and sample return missions from various volcanic units are needed.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"66 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135549427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbit determination and thrust estimation for non-cooperative target using angles-only measurement 基于角度测量的非合作目标定轨与推力估计
4区 工程技术
中国空间科学技术 Pub Date : 2023-01-01 DOI: 10.34133/space.0073
Zhixun Zhang, Leizheng Shu, Keke Zhang, Zhencai Zhu, Meijiang Zhou, Xinwei Wang, Weidong Yin
{"title":"Orbit determination and thrust estimation for non-cooperative target using angles-only measurement","authors":"Zhixun Zhang, Leizheng Shu, Keke Zhang, Zhencai Zhu, Meijiang Zhou, Xinwei Wang, Weidong Yin","doi":"10.34133/space.0073","DOIUrl":"https://doi.org/10.34133/space.0073","url":null,"abstract":"The classical interactive multimodel (IMM) algorithm has some disadvantages in tracking a noncooperative continuous thrust maneuvering spacecraft, such as poor steady-state accuracy, difficult selection of subfilter parameters, and mismatched model jump. To address the abovementioned problems, a variable-dimensional adaptive IMM strong tracking filtering algorithm (VAIMM-STEKF) is proposed to estimate the spacecraft’s position, velocity, and maneuvering acceleration state. VAIMM-STEKF contains 2 models, model 1 and model 2, which correspond to the tracking of the spacecraft in maneuvering and nonmaneuvering situations. Model 1 estimates the position and velocity of the spacecraft to ensure tracking accuracy when no maneuver occurs. Model 2 is a strong tracking filter with an augmented state. The adaptive IMM algorithm adjusts the fixed Markov transfer matrix in real time according to the model output probability. According to the different states of the spacecraft, the corresponding model interactive fusion method, together with the strong tracking filter, is adopted to ensure fast tracking when the spacecraft state changes. This method can also adapt to continuous thrust maneuvering spacecraft with different orders of magnitude. Simulation results show that the position accuracy of VAIMM-STEKF can be improved by approximately 27% and the speed accuracy can be enhanced by approximately 17% under different levels of maneuvering acceleration compared with those of the IMM algorithm. The convergence speed of VAIMM-STEKF is also better than the IMM algorithm.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135355358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics and Control of Flexible Satellite using Reaction Sphere Actuators 基于反球作动器的柔性卫星动力学与控制
4区 工程技术
中国空间科学技术 Pub Date : 2023-01-01 DOI: 10.34133/space.0077
Javad Tayebi, Ti Chen, Hao Wang
{"title":"Dynamics and Control of Flexible Satellite using Reaction Sphere Actuators","authors":"Javad Tayebi, Ti Chen, Hao Wang","doi":"10.34133/space.0077","DOIUrl":"https://doi.org/10.34133/space.0077","url":null,"abstract":"This paper presents a disturbance observer-based linear quadratic Gaussian (LQG) control strategy to stabilize the flexible spacecraft considering the vibration suppression of flexible appendages using an orthogonal cluster of magnetically suspended reaction sphere actuators. The nonlinear dynamic equation of a flexible satellite is given and then linearized using the Jacobian method to get a linear state-space model. The dynamic equation of the reaction sphere actuators is derived by considering 2 virtual gimbals. A new steering law is designed to produce the tilt angle commands of orthogonal reaction sphere actuators. The proposed disturbance observer-based LQG considers process disturbances and measurement noises, and performs a trade-off search between control efforts and regulation performance. Numerical simulations are performed to evaluate the proposed strategies for an attitude stabilization scenario, and the results illustrate that the disturbances are effectively mitigated.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"212 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135784761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Dynamics and FNTSM control of spacecraft with a film capture pocket system 基于薄膜捕获口袋系统的航天器动力学与FNTSM控制
4区 工程技术
中国空间科学技术 Pub Date : 2023-01-01 DOI: 10.34133/space.0079
Zhuoran Huang, Chao Tang, Qiang Yu, Khaliel Saleh Mohamed Shehata, Cheng Wei
{"title":"Dynamics and FNTSM control of spacecraft with a film capture pocket system","authors":"Zhuoran Huang, Chao Tang, Qiang Yu, Khaliel Saleh Mohamed Shehata, Cheng Wei","doi":"10.34133/space.0079","DOIUrl":"https://doi.org/10.34133/space.0079","url":null,"abstract":"To solve the problem of space debris, a film capture pocket system is designed in this paper. The film capture pocket is more flexible and reliable, compared with the space rope net. The film capture pocket system contains many flexible structures that are prone to large deformation and vibration during movement. The deformation causes large disturbances to the service spacecraft. It is necessary to establish an accurate rigid-flexible coupling dynamic model for quantitative analysis of disturbances. First, a film dynamic model is developed using high-order absolute nodal coordinate formulation. Second, an attitude tracking control law is designed by using the fast nonsingular terminal sliding mode controller and fixed time dilation observer (FxESO). Finally, combining dynamics and control principles, a virtual prototype of spacecraft with film capture pocket system is established. The simulation results show that higher-order absolute nodal coordinate formulation elements have better convergence, compared to ABAQUS finite element analysis. Meanwhile, the dynamic model simulates the deformation and vibration states of large flexible structures, during the spacecraft maneuver. The FxESO can estimate and compensate the complex disturbance. The error under fast nonsingular terminal sliding mode + FxESO control law converge more rapidly than the nonsingular terminal sliding mode + expansion observer control law. The final spacecraft attitude tracking error is about 10 −4 , indicating the effectiveness of the controller.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135699127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised interpolation recovery method for spectrum anomaly detection and localization 光谱异常检测与定位的无监督插值恢复方法
4区 工程技术
中国空间科学技术 Pub Date : 2023-01-01 DOI: 10.34133/space.0082
Yishi Huang, Shuai Yuan, Naijin Liu, Qing Li, Wenyu Liang, Lei Liu
{"title":"Unsupervised interpolation recovery method for spectrum anomaly detection and localization","authors":"Yishi Huang, Shuai Yuan, Naijin Liu, Qing Li, Wenyu Liang, Lei Liu","doi":"10.34133/space.0082","DOIUrl":"https://doi.org/10.34133/space.0082","url":null,"abstract":"With the growing efficiency of the use of unlicensed spectrum, the challenge of ensuring spectrum security has become increasingly daunting. Spectrum managers aim to accurately and efficiently detect and recognize anomaly behaviors in the spectrum. In this study, we propose a novel framework for spectrum anomaly detection and localization by spectrum interpolation recovery. Spectrum interpolation recovery refers to the recovery of the rest of the spectrum distribution based on a part of the spectrum distribution, which is achieved through a masked autoencoder (MAE) model with a core of multi-head self-attention (MHSA) mechanism. The spectrum interpolation recovery method restores the region where the masked abnormal signals are present, yielding anomaly-free results, with the difference between the restored and the masked representing the anomaly signals. The proposed method has been demonstrated to effectively reduce model-induced over-recovery of anomalous signals and dilute large-scale generation errors caused by anomalies, thereby improving the detection and localization performance of anomaly signals, and improving the area under the receiver operating characteristic curve (AUC) and the area under the precision–recall curve (AUPRC) by 0.0382 (3.68%) and 0.1992 (68.90%), respectively. On a designed dataset containing 3 variables of interference-to-signal ratio (ISR), signal-to-noise ratio (SNR), and anomaly type, the total recall of anomaly detection and localization at a 5% false alarm rate reached 0.8799 and 0.5536, respectively. Furthermore, a comparative study among different methods demonstrates the effectiveness and rationality of the proposed method.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"130 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135845953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised Spectrum Anomaly Detection Method for Unauthorized Bands 非授权频段的无监督频谱异常检测方法
IF 0.9 4区 工程技术
中国空间科学技术 Pub Date : 2022-02-21 DOI: 10.34133/2022/9865016
Yu Tian, Haihua Liao, Jing Xu, Ya Wang, Shuai Yuan, Naijin Liu
{"title":"Unsupervised Spectrum Anomaly Detection Method for Unauthorized Bands","authors":"Yu Tian, Haihua Liao, Jing Xu, Ya Wang, Shuai Yuan, Naijin Liu","doi":"10.34133/2022/9865016","DOIUrl":"https://doi.org/10.34133/2022/9865016","url":null,"abstract":"With the rapid development of wireless communication, spectrum plays increasingly important role in both military and civilian fields. Spectrum anomaly detection aims at detecting emerging anomaly signals and spectrum usage behavior in the environment, which is indispensable to secure safety and improve spectrum efficiency. However, spectrum anomaly detection faces many difficulties, especially for unauthorized frequency bands. In unauthorized bands, the composition of spectrum is complex and the anomaly usage patterns are unknown in prior. In this paper, a Variational Autoencoder- (VAE-) based method is proposed for spectrum anomaly detection in unauthorized bands. First of all, we theoretically prove that the anomalies in unauthorized bands will introduce Background Noise Enhancement (BNE) effect and Anomaly Signal Disappearance (ASD) effects after VAE reconstruction. Then, we introduce a novel anomaly metric termed as percentile (PER) score, which focuses on capturing the distribution variation of reconstruction error caused by ASD and BNE. In order to verify the effectiveness of our method, we developed an ISM Anomaly Detection (IAD) dataset. The proposed PER score achieves superior performance against different type of anomalies. For QPSK type anomaly, our method increases the recall rate from 80% to 93% while keeping a false alarm rate of 5%. The proposed method is beneficial to broadband spectrum sensing and massive spectrum data processing. The code will be released at :QXSLAB/vae_ism_ano.git.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"27 4 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83507891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mission Design of an Aperture-Synthetic Interferometer System for Space-Based Exoplanet Exploration 天基系外行星探测孔径合成干涉仪系统的任务设计
IF 0.9 4区 工程技术
中国空间科学技术 Pub Date : 2022-02-17 DOI: 10.34133/2022/9835234
F. Jia, Xiangyu Li, Zhuoxi Huo, D. Qiao
{"title":"Mission Design of an Aperture-Synthetic Interferometer System for Space-Based Exoplanet Exploration","authors":"F. Jia, Xiangyu Li, Zhuoxi Huo, D. Qiao","doi":"10.34133/2022/9835234","DOIUrl":"https://doi.org/10.34133/2022/9835234","url":null,"abstract":"In recent years, exoplanet detection has become the technological frontier in the field of astronomy, because it provides evidence of the origin of life and the future human habitable exoplanet. Deploying several satellites to form an aperture-synthetic interferometer system in space may help discover “another Earth” via interferometry and midinfrared broadband spectroscopy. This paper analyzes a space-based exoplanet exploration mission in terms of the scientific background, mission profile, trajectory design, and orbital maintenance. First, the system architecture and working principle of the interferometer system are briefly introduced. Secondly, the mission orbit and corresponding transfer trajectories are discussed. The halo orbit near the Sun-Earth L2 (SEL2) orbit is chosen as the candidate mission orbit. The low-energy transfer via stable invariant manifold with multiple perigees is designed, and the proper launch windows are presented. A speed increment less than 10 m/s is imposed for each transfer to achieve the insertion of the halo orbit. Finally, the tangent targeting method (TTM) is applied for high-precision formation maintenance with the whole velocity increments of less than 5×10−4 m/s for each spacecraft when the error bound is 0.1 m. The overall fuel budget during the mission period is evaluated and compared. The design in this paper will provide technical support and reliable reference for future exoplanet exploration missions.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"33 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90077785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Numerical Simulation of Decompression Process of a Mars Rover in the Launch Phase 火星探测器发射阶段减压过程的数值模拟
IF 0.9 4区 工程技术
中国空间科学技术 Pub Date : 2022-02-02 DOI: 10.34133/2022/9827483
Weizhang Wang, W. Rao, Qi Li, H. Yan, Rui Zhao
{"title":"Numerical Simulation of Decompression Process of a Mars Rover in the Launch Phase","authors":"Weizhang Wang, W. Rao, Qi Li, H. Yan, Rui Zhao","doi":"10.34133/2022/9827483","DOIUrl":"https://doi.org/10.34133/2022/9827483","url":null,"abstract":"This paper performs numerical simulation on the decompression process of a Mars rover using FLUENT. The pressure differential between the inside and outside of the Mars rover resulting from changes in ambient pressure of the rocket fairing is investigated. In terms of numerical simulation, PROFILE outlet boundary conditions are developed and the impacts of ambient pressure settings, time steps, and mesh density are investigated to improve the accuracy of simulation results. The decompression process of the separate large module, large and small modules under two types of ambient pressures are simulated. The results show that the largest pressure differential between the inside and outside of the module body is less than 2200 Pa. Because of the small size of the small module, the results for the separate large module and the large/small modules are consistent. The pressure differential between the inside and outside of the rover is mainly influenced by the variation in ambient pressure.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"1968 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91367771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Study on Effect of Aerodynamic Configuration on Aerodynamic Performance of Mars Ascent Vehicles 气动构型对火星上升飞行器气动性能的影响研究
IF 0.9 4区 工程技术
中国空间科学技术 Pub Date : 2022-01-29 DOI: 10.34133/2022/9790131
Qi Li, Wu Yuan, Rui Zhao, Haogong Wei
{"title":"Study on Effect of Aerodynamic Configuration on Aerodynamic Performance of Mars Ascent Vehicles","authors":"Qi Li, Wu Yuan, Rui Zhao, Haogong Wei","doi":"10.34133/2022/9790131","DOIUrl":"https://doi.org/10.34133/2022/9790131","url":null,"abstract":"The Mars surface take-off and ascent technology is one of the key technologies for realizing the Mars sample return mission. Different from that on the moon, the gravity acceleration on the surface of Mars is 3.71 m/s2, so that the gravity loss is larger than that on the moon; a rarefied atmosphere is found on the surface of Mars, and although it is only about 1% of the Earth’s atmosphere, its effect on aerodynamic drag in the process of ascent shall also be considered. In this paper, the aerodynamic performance demand of ascent vehicles is analyzed in light of the mission requirements for take-off and ascent from the surface of Mars. Based on the results of literature research and supersonic CFD static simulation, the influence of forebody and afterbody shapes of ascent vehicles on aerodynamic drag and static stability is studied, respectively. The forebody shape of ascent vehicles with better aerodynamic performance is proposed, and the subsequent improvement direction of aerodynamic configuration is clarified, providing necessary theoretical and data support for the aerodynamic selection of Mars ascent vehicles.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"8 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77174684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信