{"title":"Monitoring the health of bridges using accelerations from a fleet of vehicles without knowing individual axle weights","authors":"D. McCrum, Shuo Wang, E. Obrien","doi":"10.1080/24705314.2023.2193779","DOIUrl":"https://doi.org/10.1080/24705314.2023.2193779","url":null,"abstract":"ABSTRACT This paper proposes a new indirect bridge structural health monitoring concept that uses acceleration data from a fleet of different vehicles with unknown weights. When a vehicle passes the bridge, the vertical displacement under its axles can be inferred from its vertical accelerations. This displacement, termed the “apparent profile”, contains two components: bridge profile elevations and bridge deflections under the axle. The two deflection component can be used to find the moving reference influence function (MRIF), defined as the deflection at a (moving) reference point due to a unit load at another point, moving at the same speed. The MRIF can be found when all axle weights are known. In this paper, a new method is proposed to obtain road profile and bridge health condition from the vehicle acceleration, without knowing individual axle weights. Numerical simulation results show that the inferred bridge profile changes when the bridge health condition changes. The difference can be used as an indicator of bridge damage and is illustrated here through an example of bearing damage.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44130001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative seismic performance of building with Cu-Al-Be and Ni-Ti SMARB base isolation system using particle swarm optimization","authors":"Sanjay Baidya, B. Roy","doi":"10.1080/24705314.2023.2170124","DOIUrl":"https://doi.org/10.1080/24705314.2023.2170124","url":null,"abstract":"ABSTRACT This study deals with the optimal performance of a five-storeyed shear frame building, base isolated with shape memory alloy rubber bearing (SMARB), under a set of real earthquake data. Nickel-Titanium (Ni-Ti) as well as Copper-Aluminum-Beryllium (Cu-Al-Be) is used as SMA material, and the responses are compared for both systems. The variations of optimized responses of the building are obtained for changing various structural and isolator parameters. A numerical study is taken where the optimization problem is considered to minimize the top floor acceleration by obtaining the optimal value of normalised forward transformation strength (F S0 ) of SMA using the particle swarm optimization (PSO) algorithm, which is an advanced bio-inspired optimization technique and relies on an intelligent swarm of particles which search for the solution in the problem space. The study shows that Cu-Al-Be-based SMARB system is more efficient than the traditional Ni-Ti-based base isolation system in reducing the top floor acceleration of the building at a marginal cost of isolator displacement. The optimal F S0 is considerably higher for Cu-Al-Be SMA device in practical conditions. Overall this study shows that Cu-Al-Be is a better choice for SMARB isolated buildings for mitigating seismic vibration compared to Ni-Ti SMARB system.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47844476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Yasir, A. Macilwraith, C. O’Ceallaigh, K. Ruane
{"title":"Effect of protective cladding on the fire performance of vertically loaded cross-laminated timber (CLT) wall panels","authors":"Muhammad Yasir, A. Macilwraith, C. O’Ceallaigh, K. Ruane","doi":"10.1080/24705314.2023.2189683","DOIUrl":"https://doi.org/10.1080/24705314.2023.2189683","url":null,"abstract":"ABSTRACT Cross-laminated timber (CLT) is a sustainable engineered wood product which is utilised in modern multi-storey timber buildings. The fire behaviour of timber structures is often a concern due to their combustible nature. In this paper, experimental fire testing of CLT panels made of Irish spruce was performed. This series of tests consisted of four vertically loaded CLT wall panels which were tested under Standard fire curves in the Structural Laboratory of Munster Technological University, Cork (MTU). To improve the fire performance of CLT panels, different types of protective claddings were used. The effectiveness of each system of protection has been stated particularly in terms of the delay in the start of charring of the CLT panels. The location of joints in the protective cladding was also analysed and was found to be a key factor in the fall-off time of the protective claddings. The results show that protective claddings made with Fireline gypsum plasterboard and a combination of plywood and Fireline gypsum plasterboard delayed the charring of CLT panels by as much as 30 and 44 min respectively. This paper analyses the detailed results of experimental fire testing and measures the charring rate and temperature distribution across the panels.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46175314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nothing-on-road bridge-weigh-in-motion used for long-span, concrete-box-girder bridges: an experimental case study","authors":"A. Moghadam, M. AlHamaydeh, Rodrigo Sarlo","doi":"10.1080/24705314.2023.2165606","DOIUrl":"https://doi.org/10.1080/24705314.2023.2165606","url":null,"abstract":"ABSTRACT Nothing-on-road bridge-weigh-in-motion (NOR-BWIM) leverages the response of an instrumented bridge to identify various aspects of traffic information. This system circumvents many of the current issues with traditional BWIM systems, such as lane closure, expensive installation, etc. Most of the current studies are performed on short or medium-span T-beam and span-on-girder bridges. However, longer span lengths, construction methods, etc. can affect the efficacy of the NOR-BWIM. Thus, there is a need to further evaluate this technique on other bridges such as concrete-box-girder bridges with longer spans, in an effort to ascertain whether or not NOR-BWIM systems would still work effectively on such bridges. This work presents an experimental investigation conducted for a long-span concrete-box-girder bridge (144 m span). A total of 18 experimental tests were performed on the bridge. Moreover, a cost-effective sensor placement was developed for general use on similar long-span concrete-box-girder bridges. It was found that the number of axles is detectable with an accuracy of 100%. Moreover, the estimated mean-absolute-error for axle spacing, vehicle speed, and gross vehicle weight, were 4.6%, 2.6%, and 4.6%, respectively. Finally, it was also demonstrated that the developed cost-effective NOR-BWIM system is capable of lane identification and truck position detection.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49399286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite element modeling of bond behavior between heat-damaged concrete and carbon fiber-reinforced polymer sheets","authors":"Y. Obaidat, Wasim S. Barham, Shireen Z. Hayajneh","doi":"10.1080/24705314.2023.2168398","DOIUrl":"https://doi.org/10.1080/24705314.2023.2168398","url":null,"abstract":"ABSTRACT In this study, several finite element (FE) models were constructed and validated with data from experiments that focused on bond behavior between heat-damaged concrete and carbon fiber–reinforced polymer (CFRP). Different parameters as the compressive strength of concrete, CFRP width and length, number of CFRP layers (one, two and three layers) and heat exposure level were considered. A concrete block of 150 mm width, 150 mm height and 300 mm span length strengthened using different configurations of CFRP sheets was used to investigate the bond behavior by means of single shear test. The results show a good congruence with the investigated studies. The results of this study showed that beyond a temperature of 500°C, there was a considerable deterioration in bond properties between CFRP sheets and concrete. Also, a slight enhancement in ultimate bond load was noticed for some cases at temperature of 300°C, especially for concrete specimens having highest compressive strength at room temperature. Finally, numerical study was performed to develop modification factor to Diab and Farghal (2014) bond model to account for effects of damage of concrete due to high temperature exposure.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43898403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Tran, P. Sancharoen, P. Klomjit, S. Tangtermsirikul, Thi Hai Yen Nguyen
{"title":"Prediction equations for corrosion rate of reinforcing steel in cement-fly ash concrete","authors":"D. Tran, P. Sancharoen, P. Klomjit, S. Tangtermsirikul, Thi Hai Yen Nguyen","doi":"10.1080/24705314.2023.2165749","DOIUrl":"https://doi.org/10.1080/24705314.2023.2165749","url":null,"abstract":"ABSTRACT This study is to incorporate the time-dependent development of microstructures of cement-fly ash concrete into the evaluation of corrosion severity for newly constructed structures and existing structures. The electrical resistivity, corrosion potential, and corrosion rate were determined for twelve series of concrete mixtures prepared with various water-to-binder ratios, fly ash contents, and chloride contents. The time-dependent developments of cement-fly ash paste, including hydration degree, pozzolanic reaction degree, and capillary porosity, are adopted based on previous models. The correlation between the corrosion rate and the time-dependent developments was considered for the proposed equations. The experimental results indicate that low water-to-binder ratio concrete and fly ash concrete show a low corrosion rate of reinforcement. Because the microstructure of concrete became denser, represented by a high degree of hydration and low porosity. This phenomenon increases the corrosion resistance of concrete. Besides, the chloride ions can accelerate the corrosion rate of reinforcement. Its effects of corrosion acceleration are found to be different in fly ash concrete because the fly ash can capture free chloride ions.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42696965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Air emission pollutants of different partial depth concrete bridge deck repair techniques: a comparative study","authors":"Israi Abu Shanab, A. Sorensen","doi":"10.1080/24705314.2023.2167575","DOIUrl":"https://doi.org/10.1080/24705314.2023.2167575","url":null,"abstract":"ABSTRACT Bridges are one of the main components of highway networks with intensive impacts in terms of air emissions. Therefore, an environmental assessment is essential for the bridge life cycle phases including design, construction, usage and maintenance, and lastly end of life. Most of the existing studies have focused on the material and construction phase while less attention has been given to the use and maintenance phase; notwithstanding the rapid increasing rate of bridge rehabilitation activities. This paper focuses on the bridge maintenance phase and represents a comparative environmental case study. The purpose of this paper is to compare different partial-depth concrete removal techniques from an environmental perspective, particularly the environmental effects on air quality. The paper compares the pollutant emissions of four common techniques: chipping, sawing and chipping, milling, and water-blasting. Two environmental data models are used, GREET and MOVES, and five air pollutants are considered which are CO2, CO, NOx, SO2, and PM10. The results indicate that chipping produces the least amount of pollutant emissions while milling emits the highest amount of air emissions. Additionally, there is a proportional relationship between the utilization time of the removal method and the amount of the released emissions of the method.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42797046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perturbation approach for damage localization in beam-type structures: analytical, experimental and numerical exposition","authors":"Md. Arif Faridi, K. Roy, V. Singhal","doi":"10.1080/24705314.2023.2168171","DOIUrl":"https://doi.org/10.1080/24705314.2023.2168171","url":null,"abstract":"ABSTRACT Structures are usually designed to undergo some yielding, cracking and damage during any catastrophic events like earthquakes. It is necessary to identify these damage locations to avoid the failure of the structure. In this study, a novel method of damage localization for a linear one-dimensional mathematical model of Euler-Bernoulli beam is developed. The damage is modeled as a normalized box-car function. The first-order perturbation in the form of a small change in the stiffness is introduced to the structure. This study employed an effective boxcar filtration technique in damage localization. The proposed formulation shows a distinct peak at the damage location. Further, a two-point roving technique is employed on the experimental model of an overhanging beam under impact loading to check the effectiveness of the proposed localization procedure under real measurement conditions. For its entirety, the finite element model for different end conditions through numerical simulations is also briefly addressed. It is observed that the results obtained from the experimental investigation and the simulation studies are in agreement with the proposed formulation. The proposed methodology does not consider the effect of noise, which can be addressed as the future scope of the present study.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49513781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A state-of-the-art review of active-thermometry techniques for bridge and pipeline scour monitoring, and exploratory passive thermometry studies","authors":"Mohammed Farooq, F. Azhari, N. Banthia","doi":"10.1080/24705314.2023.2165471","DOIUrl":"https://doi.org/10.1080/24705314.2023.2165471","url":null,"abstract":"ABSTRACT This paper reviews the application of active thermometry techniques for bridge and pipeline scour monitoring, and explores the potential for passive thermometry through outdoor bucket-type static scour experiments. Active thermometry uses a device to supply heat and then monitors temperature loss. The heat generation is typically through resistive (joule) heating, and temperature is measured using digital temperature sensors, fiber optic temperature sensors, and thermistors. All laboratory studies in the literature were conducted in static conditions, in which the onset and progression of scour are detected by monitoring the changes in thermal properties using sensors placed along the bridge pier (or pipeline). The passive thermometry option explored in this study involved using DS18b20 digital temperature sensors to measure temperature variations in water and in three sediment types: clay, sand, and gravel. The results demonstrated larger diurnal variations in water than in the sediments. Sensors located in the sediment were distinguished from those in water by examining a combination of decrement ratios and phase shifts among the different temperature waveforms obtained for a finite number of diurnal cycles.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42599912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Structural behavior of reinforced concrete incorporating glass waste as coarse aggregate","authors":"S. M. Hama, Z. M. Ali, H. Zayan, A. Mahmoud","doi":"10.1080/24705314.2023.2165470","DOIUrl":"https://doi.org/10.1080/24705314.2023.2165470","url":null,"abstract":"ABSTRACT Most of the previous work related to using waste glass as aggregate in concrete focused on mechanical properties, so this investigation focused on the structural behavior of reinforced concrete (RC) beams incorporating waste glass as a partial replacement of aggregate. This research investigated the influence of waste glass as a replacement for coarse aggregate in the following percentages: 0% (reference), 25% and 50%, on the structural behavior of RC beams. This work uses six beams (cross-section 150 × 150 mm and span length of 900 mm). In addition to the effect of glass aggregate content on structural behavior, another parameter was considered, which is the effect of longitudinal steel reinforcement ratio (2Ø10 mm, ρ = 0.0083; 2Ø16 mm, ρ = 0.0222). The beams containing waste glass aggregate (WGA) showed a more ductile behavior and were less stiff compared to reference beams. Beams containing WGA showed good strength and satisfactory structural performance compared with the reference beam.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"60128247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}