Research in Number Theory最新文献

筛选
英文 中文
Identities associated to a generalized divisor function and modified Bessel function 广义除数函数和修正贝塞尔函数的恒等式
IF 0.8
Research in Number Theory Pub Date : 2023-03-31 DOI: 10.1007/s40993-023-00431-3
D. Banerjee, B. Maji
{"title":"Identities associated to a generalized divisor function and modified Bessel function","authors":"D. Banerjee, B. Maji","doi":"10.1007/s40993-023-00431-3","DOIUrl":"https://doi.org/10.1007/s40993-023-00431-3","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89071851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Modular forms on $${{,textrm{SU},}}(2,1)$$ with weight $$frac{1}{3}$$ 模块形式在$${{,textrm{SU},}}(2,1)$$与重量 $$frac{1}{3}$$
IF 0.8
Research in Number Theory Pub Date : 2023-03-28 DOI: 10.1007/s40993-022-00361-6
E. Freitag, Richard M. Hill
{"title":"Modular forms on $${{,textrm{SU},}}(2,1)$$ with weight $$frac{1}{3}$$","authors":"E. Freitag, Richard M. Hill","doi":"10.1007/s40993-022-00361-6","DOIUrl":"https://doi.org/10.1007/s40993-022-00361-6","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87504722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on Halász’s Theorem in Fq[t]documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {F}}_q[t]$$end{document} A note on Halász’s Theorem in Fq[t]documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {F}}_q[t]$$end{document}
IF 0.8
Research in Number Theory Pub Date : 2023-03-22 DOI: 10.1007/s40993-023-00432-2
Ardavan Afshar
{"title":"A note on Halász’s Theorem in Fq[t]documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} begin{document}$${mathbb {F}}_q[t]$$end{document}","authors":"Ardavan Afshar","doi":"10.1007/s40993-023-00432-2","DOIUrl":"https://doi.org/10.1007/s40993-023-00432-2","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74852808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The probability of non-isomorphic group structures of isogenous elliptic curves in finite field extensions, I 有限域扩展中等均椭圆曲线非同构群结构的概率
IF 0.8
Research in Number Theory Pub Date : 2023-01-22 DOI: 10.1007/s40993-023-00456-8
J. Cullinan, N. Kaplan
{"title":"The probability of non-isomorphic group structures of isogenous elliptic curves in finite field extensions, I","authors":"J. Cullinan, N. Kaplan","doi":"10.1007/s40993-023-00456-8","DOIUrl":"https://doi.org/10.1007/s40993-023-00456-8","url":null,"abstract":"","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72830781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlikely intersections on the p-adic formal ball. p进正式球上不可能的交集。
IF 0.8
Research in Number Theory Pub Date : 2023-01-01 DOI: 10.1007/s40993-023-00441-1
Vlad Serban
{"title":"Unlikely intersections on the <i>p</i>-adic formal ball.","authors":"Vlad Serban","doi":"10.1007/s40993-023-00441-1","DOIUrl":"https://doi.org/10.1007/s40993-023-00441-1","url":null,"abstract":"<p><p>We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's <i>p</i>-adic formal Manin-Mumford results for <i>n</i>-dimensional <i>p</i>-divisible formal groups <math><mi>F</mi></math> . In particular, given a finitely generated subgroup <math><mi>Γ</mi></math> of <math><mrow><mi>F</mi> <mo>(</mo> <msub><mover><mi>Q</mi> <mo>¯</mo></mover> <mi>p</mi></msub> <mo>)</mo></mrow> </math> and a closed subscheme <math><mrow><mi>X</mi> <mo>↪</mo> <mi>F</mi></mrow> </math> , we show under suitable assumptions that for any points <math><mrow><mi>P</mi> <mo>∈</mo> <mi>X</mi> <mo>(</mo> <msub><mi>C</mi> <mi>p</mi></msub> <mo>)</mo></mrow> </math> satisfying <math><mrow><mi>n</mi> <mi>P</mi> <mo>∈</mo> <mi>Γ</mi></mrow> </math> for some <math><mrow><mi>n</mi> <mo>∈</mo> <mi>N</mi></mrow> </math> , the minimal such orders <i>n</i> are uniformly bounded whenever <i>X</i> does not contain a formal subgroup translate of positive dimension. In contrast, we then provide counter-examples to a full <i>p</i>-adic formal Mordell-Lang result. Finally, we outline some consequences for the study of the Zariski-density of sets of automorphic objects in <i>p</i>-adic deformations. Specifically, we do so in the context of the nearly ordinary <i>p</i>-adic families of cuspidal cohomological automorphic forms for the general linear group constructed by Hida.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9408242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Inequalities for higher order differences of the logarithm of the overpartition function and a problem of Wang-Xie-Zhang. 过配分函数的对数高阶差分不等式及王协章问题。
IF 0.8
Research in Number Theory Pub Date : 2023-01-01 DOI: 10.1007/s40993-022-00420-y
Gargi Mukherjee
{"title":"Inequalities for higher order differences of the logarithm of the overpartition function and a problem of Wang-Xie-Zhang.","authors":"Gargi Mukherjee","doi":"10.1007/s40993-022-00420-y","DOIUrl":"https://doi.org/10.1007/s40993-022-00420-y","url":null,"abstract":"<p><p>Let <math> <mrow><mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> denote the overpartition function. In this paper, our primary goal is to study the asymptotic behavior of the finite differences of the logarithm of the overpartition function, i.e., <math> <mrow> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> , by studying the inequality of the following form <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mo>log</mo> <mrow><mo>(</mo></mrow> <mn>1</mn> <mo>+</mo> <mstyle> <mfrac><mrow><mi>C</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <msup><mi>n</mi> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> </mfrac> </mstyle> <mo>-</mo> <mstyle> <mfrac><mrow><mn>1</mn> <mo>+</mo> <msub><mi>C</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </mrow> <msup><mi>n</mi> <mi>r</mi></msup> </mfrac> </mstyle> <mrow><mo>)</mo></mrow> <mrow></mrow></mrow> </mtd> <mtd><mrow><mrow></mrow> <mo><</mo> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <mrow></mrow> <mrow></mrow></mrow> </mtd> <mtd><mrow><mrow></mrow> <mo><</mo> <mo>log</mo> <mrow><mo>(</mo></mrow> <mn>1</mn> <mo>+</mo> <mstyle> <mfrac><mrow><mi>C</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <msup><mi>n</mi> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> </mfrac> </mstyle> <mrow><mo>)</mo></mrow> <mspace></mspace> <mtext>for</mtext> <mspace></mspace> <mi>n</mi> <mo>≥</mo> <mi>N</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math><mrow><mi>C</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo> <msub><mi>C</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo> <mtext>and</mtext> <mspace></mspace> <mi>N</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </mrow> </math> are computable constants depending on the positive integer <i>r</i>, determined explicitly. This solves a problem posed by Wang, Xie and Zhang in the context of searching for a better lower bound of <math> <mrow> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> than 0. By settling the problem, we are able to show that <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><munder><mo>lim</mo> <mrow><mi>n</mi> <mo>→</mo> <","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10841463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sato-Tate distribution of p-adic hypergeometric functions. p进超几何函数的Sato-Tate分布。
IF 0.8
Research in Number Theory Pub Date : 2023-01-01 Epub Date: 2022-11-29 DOI: 10.1007/s40993-022-00414-w
Sudhir Pujahari, Neelam Saikia
{"title":"Sato-Tate distribution of <i>p</i>-adic hypergeometric functions.","authors":"Sudhir Pujahari,&nbsp;Neelam Saikia","doi":"10.1007/s40993-022-00414-w","DOIUrl":"https://doi.org/10.1007/s40993-022-00414-w","url":null,"abstract":"<p><p>Recently Ono, Saad and the second author [21] initiated a study of value distribution of certain families of Gaussian hypergeometric functions over large finite fields. They investigated two families of Gaussian hypergeometric functions and showed that they satisfy semicircular and Batman distributions. Motivated by their results we aim to study distributions of certain families of hypergeometric functions in the <i>p</i>-adic setting over large finite fields. In particular, we consider two and six parameters families of hypergeometric functions in the <i>p</i>-adic setting and obtain that their limiting distributions are semicircular over large finite fields. In the process of doing this we also express the traces of <i>p</i>th Hecke operators acting on the spaces of cusp forms of even weight <math><mrow><mi>k</mi> <mo>≥</mo> <mn>4</mn></mrow> </math> and levels 4 and 8 in terms of <i>p</i>-adic hypergeometric function which is of independent interest. These results can be viewed as <i>p</i>-adic analogous of some trace formulas of [1, 2, 6].</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9708806/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35346191","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Summing μ ( n ) : a faster elementary algorithm. 求和μ (n):一个更快的初等算法。
IF 0.8
Research in Number Theory Pub Date : 2023-01-01 DOI: 10.1007/s40993-022-00408-8
Harald Andrés Helfgott, Lola Thompson
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Summing <ns0:math><ns0:mrow><ns0:mi>μ</ns0:mi> <ns0:mo>(</ns0:mo> <ns0:mi>n</ns0:mi> <ns0:mo>)</ns0:mo></ns0:mrow> </ns0:math> : a faster elementary algorithm.","authors":"Harald Andrés Helfgott,&nbsp;Lola Thompson","doi":"10.1007/s40993-022-00408-8","DOIUrl":"https://doi.org/10.1007/s40993-022-00408-8","url":null,"abstract":"<p><p>We present a new elementary algorithm that takes <math><mrow><mtext>time</mtext> <mspace></mspace> <mspace></mspace> <msub><mi>O</mi> <mi>ϵ</mi></msub> <mfenced><msup><mi>x</mi> <mfrac><mn>3</mn> <mn>5</mn></mfrac> </msup> <msup><mrow><mo>(</mo> <mo>log</mo> <mi>x</mi> <mo>)</mo></mrow> <mrow><mfrac><mn>8</mn> <mn>5</mn></mfrac> <mo>+</mo> <mi>ϵ</mi></mrow> </msup> </mfenced> <mspace></mspace> <mspace></mspace> <mtext>and</mtext> <mspace></mspace> <mtext>space</mtext> <mspace></mspace> <mspace></mspace> <mi>O</mi> <mfenced><msup><mi>x</mi> <mfrac><mn>3</mn> <mn>10</mn></mfrac> </msup> <msup><mrow><mo>(</mo> <mo>log</mo> <mi>x</mi> <mo>)</mo></mrow> <mfrac><mn>13</mn> <mn>10</mn></mfrac> </msup> </mfenced> </mrow> </math> (measured bitwise) for computing <math><mrow><mi>M</mi> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> <mo>=</mo> <msub><mo>∑</mo> <mrow><mi>n</mi> <mo>≤</mo> <mi>x</mi></mrow> </msub> <mi>μ</mi> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> <mo>,</mo></mrow> </math> where <math><mrow><mi>μ</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </math> is the Möbius function. This is the first improvement in the exponent of <i>x</i> for an elementary algorithm since 1985. We also show that it is possible to reduce space consumption to <math><mrow><mi>O</mi> <mo>(</mo> <msup><mi>x</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>5</mn></mrow> </msup> <msup><mrow><mo>(</mo> <mo>log</mo> <mi>x</mi> <mo>)</mo></mrow> <mrow><mn>5</mn> <mo>/</mo> <mn>3</mn></mrow> </msup> <mo>)</mo></mrow> </math> by the use of (Helfgott in: Math Comput 89:333-350, 2020), at the cost of letting time rise to the order of <math> <mrow><msup><mi>x</mi> <mrow><mn>3</mn> <mo>/</mo> <mn>5</mn></mrow> </msup> <msup><mrow><mo>(</mo> <mo>log</mo> <mi>x</mi> <mo>)</mo></mrow> <mn>2</mn></msup> <mo>log</mo> <mo>log</mo> <mi>x</mi></mrow> </math> .</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10687746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometric sieve over number fields for higher moments. 在数字域上进行几何筛选以获得更高的矩。
IF 0.8
Research in Number Theory Pub Date : 2023-01-01 Epub Date: 2023-08-02 DOI: 10.1007/s40993-023-00466-6
Giacomo Micheli, Severin Schraven, Simran Tinani, Violetta Weger
{"title":"Geometric sieve over number fields for higher moments.","authors":"Giacomo Micheli,&nbsp;Severin Schraven,&nbsp;Simran Tinani,&nbsp;Violetta Weger","doi":"10.1007/s40993-023-00466-6","DOIUrl":"10.1007/s40993-023-00466-6","url":null,"abstract":"<p><p>The geometric sieve for densities is a very convenient tool proposed by Poonen and Stoll (and independently by Ekedahl) to compute the density of a given subset of the integers. In this paper we provide an effective criterion to find all higher moments of the density (e.g. the mean, the variance) of a subset of a finite dimensional free module over the ring of algebraic integers of a number field. More precisely, we provide a geometric sieve that allows the computation of all higher moments corresponding to the density, over a general number field <i>K</i>. This work advances the understanding of geometric sieve for density computations in two ways: on one hand, it extends a result of Bright, Browning and Loughran, where they provide the geometric sieve for densities over number fields; on the other hand, it extends the recent result on a geometric sieve for expected values over the integers to both the ring of algebraic integers and to moments higher than the expected value. To show how effective and applicable our method is, we compute the density, mean and variance of Eisenstein polynomials and shifted Eisenstein polynomials over number fields. This extends (and fully covers) results in the literature that were obtained with ad-hoc methods.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10397131/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9943903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
p-adic vertex operator algebras. p进顶点算子代数。
IF 0.8
Research in Number Theory Pub Date : 2023-01-01 DOI: 10.1007/s40993-023-00433-1
Cameron Franc, Geoffrey Mason
{"title":"<i>p</i>-adic vertex operator algebras.","authors":"Cameron Franc,&nbsp;Geoffrey Mason","doi":"10.1007/s40993-023-00433-1","DOIUrl":"https://doi.org/10.1007/s40993-023-00433-1","url":null,"abstract":"<p><p>We postulate axioms for a chiral half of a nonarchimedean 2-dimensional bosonic conformal field theory, that is, a vertex operator algebra in which a <i>p</i>-adic Banach space replaces the traditional Hilbert space. We study some consequences of our axioms leading to the construction of various examples, including <i>p</i>-adic commutative Banach rings and <i>p</i>-adic versions of the Virasoro, Heisenberg, and the Moonshine module vertex operator algebras. Serre <i>p</i>-adic modular forms occur naturally in some of these examples as limits of classical 1-point functions.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10071837/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9289144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信