{"title":"Analyzing the Effect of Temperature on Squash Ball Impacts Using High-Speed Camera Recordings","authors":"Bence Ferenc Berencsi, A. Kossa","doi":"10.3311/ppme.18381","DOIUrl":"https://doi.org/10.3311/ppme.18381","url":null,"abstract":"Description of the impact characteristics of different types of balls has a great importance in sport science and in engineering. The primary objective of the present paper is to investigate the effect of the temperature on the impacts of different types of squash balls from a given company. The shots were performed using a self-built air-cannon. The impacts were recorded by a high-speed camera and the recorded videos were analyzed by an image-processing method based on a background subtraction technique. Summarizing the main dynamical parameters, we can conclude that increasing the initial speed will decrease the contact time, the coefficient of restitution (COR) and the rebound resilience, whereas these parameters increase at elevated temperatures. The compression tests revealed that within the low velocity range the deformation of the ball’s material and not the compression of the inner gas is the main contribution in the force needed to compress the ball. However, when the ball suffers large deformations, the internal air pressure has a huge effect on the rebound behavior. The measurements revealed that there is an optimal initial velocity distinct from the maximum one where the rebound velocity of the ball is higher than in all other cases. From the results we can state that the ball's overall stiffness grows as the temperature increases.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76262869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Smart Zone Heating in Different Heating Systems","authors":"Rastislav Ingeli, P. Buday","doi":"10.3311/ppme.17437","DOIUrl":"https://doi.org/10.3311/ppme.17437","url":null,"abstract":"The basic concept in the design of buildings with zero energy consumption is, in addition to high-quality thermal properties of the building envelope, also a correct and efficient system of heating and hot water preparation in residential buildings. One of the basic concepts when designing heating systems is a zone heating system. It is a system that brings effective regulation according to heating zones. In practice, the question sometimes arises as to whether zone regulation of individual rooms in small family houses is necessary. That is whether in such buildings, zone heating is not an unnecessary investment cost. In this paper, we analyze the effect of zone heating in two types of heat transfer systems on the internal operating temperature in the individual analyzed zones, which are interconnected by an internal partition structure. It is a verification that even in smaller spaces, zone heating has a significant potential for energy savings.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79915912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparison of Surface Roughness When Turning and Milling","authors":"Abdul W. Mgherony, Balázs Mikó, Gabriella Farkas","doi":"10.3311/ppme.17898","DOIUrl":"https://doi.org/10.3311/ppme.17898","url":null,"abstract":"The quality of a machined surface can be described by macro and micro parameters, like the size error, the form and position error or the surface roughness. The task of machining process planning is to find the best machining method and parameters, which ensure the required quality. In this article, the surface roughness in the case of turning and milling technologies is analysed. The effect of the cutting parameters (feed at turning and depth of cut at milling) and the tool parameter (corner radius) are investigated. The results are compared with the theoretical geometric model of surface roughness. In longitudinal turning as well as in constant Z-level milling, the geometric model of surface roughness is similar. The article presents whether the real surface roughness is similar too.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74976203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Investigation and Numerical Prediction of the Effects of Cutting Tool Geometry During Turning of AISI 316L Steel","authors":"A. Benmeddour","doi":"10.3311/ppme.16844","DOIUrl":"https://doi.org/10.3311/ppme.16844","url":null,"abstract":"In this work, a numerical and an experimental study aimed to gain a better understanding of the impact of tool geometry such as (rake angle and cutting edge radius) on the temperature distribution and residual stresses in machining surface of AISI 316L stainless steel have been presented. To evaluate the experimental results, various experimental equipment was used, such as a conventional lathe to carry out the machining operations, the cutting force was measured using a Kistler dynamometer and X-ray diffraction technique was employed for determination of the residual stresses distribution on the machined surfaces. In addition, A thermo-mechanically coupled finite element (FE) analysis for cutting process is developed through ABAQUS code to predict the temperature distribution and residual stresses using an Arbitrary Lagrangian-Eulerian (ALE) approach. An inverse identification method has been used to determine the adequate Johnson-Cook (JC) material model parameters to obtain a good correlation between the cutting force measurements and numerical one. The FE model was then validated by comparison of the numerical results of residual stresses with experimental measurements for different tool geometries, which revealed a reasonable agreement.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84133153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chromatic Discrimination Thresholds as a Function of Color Differences and Cone Excitations","authors":"Á. Urbin, B. Nagy","doi":"10.3311/ppme.18691","DOIUrl":"https://doi.org/10.3311/ppme.18691","url":null,"abstract":"In this paper, Just Noticeable Differences (JNDs) of color-normal subjects measured towards the Protan, Deutan, and Tritan confusion points are presented as a function of the chromaticity of the reference points. Measurements were executed with the Cambridge Colour Test Trivector test in equidistant reference points towards eight directions equally spaced and centered on the neutral reference point in the CIE 1976 UCS diagram.Results were evaluated as the function of the distance between the reference points and the neutral point. The reference points were the chromaticities of the backgrounds of the pseudoisochromatic plates in the test, and the neutral point was defined as equal energy white. The evaluation was performed considering ∆Eu'v' differences and L/(L + M) and S/(L + M) ratios of the cone-excitations.Chromatic discrimination thresholds exceeded the normative upper limit of color normal subjects in ∆Eu'v' units at extreme reference points. Shifting the reference points from the neutral point towards the confusion points indicated an increase of Just Noticeable Differences measured towards the confusion points following second-order polynomials. Based on our results a model estimating the JNDs expressed in ∆Eu'v' units towards the confusion points was recommended.Even though CIE 1976 UCS diagram is not a perceptually uniform color space, the Just Noticeable Differences measured with the CCT correlate with the corresponding L' and S' cone excitations. This confirms the basic applicability of the CIE 1976 UCS diagram for characterizing Just Noticeable Differences. For complete perceptual analysis, the use of cone-excitation-based metrics is still essential and recommended.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85180939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nawal Ferroudj, H. Koten, Sacia Kachi, S. Boudebous
{"title":"Prandtl Number Effects on the Entropy Generation During the Transient Mixed Convection in a Square Cavity Heated from Below","authors":"Nawal Ferroudj, H. Koten, Sacia Kachi, S. Boudebous","doi":"10.3311/PPME.17563","DOIUrl":"https://doi.org/10.3311/PPME.17563","url":null,"abstract":"This numerical study considers the mixed convection, heat transfer and the entropy generation within a square cavity partially heated from below with moving cooled vertical sidewalls. All the other horizontal sides of the cavity are assumed adiabatic. The governing equations, in stream function–vorticity form, are discretized and solved using the finite difference method. Numerical simulations are carried out, by varying the Richardson number, to show the impact of the Prandtl number on the thermal, flow fields, and more particularly on the entropy generation. Three working fluid, generally used in practice, namely mercury (Pr = 0.0251), air (Pr = 0.7296) and water (Pr = 6.263) are investigated and compared. Predicted streamlines, isotherms, entropy generation, as well as average Nusselt numbers are presented. The obtained results reveal that the impact of the Prandtl number is relatively significant both on the heat transfer performance and on the entropy generation. The average Nusselt number increase with increasing Prandtl number. Its value varies thereabouts from 3.7 to 3.8 for mercury, from 5.5 to 13 for air and, from 12.5 to 15 for water. In addition, it is found that the total average entropy generation is significantly higher in the case of mercury (Pr«1) and water (Pr»1) than in the case of air (Pr~1). Its value varies approximately from 700 to 1100 W/m3 K for mercury, from 200 to 500 W/m3 K for water and, from 0.03 to 5 W/m3 K for air.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80927855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ensuring the Required Potable Water Temperature in Water Pipeline Inside Buildings","authors":"Dominika Macková, J. Peráčková","doi":"10.3311/PPME.18205","DOIUrl":"https://doi.org/10.3311/PPME.18205","url":null,"abstract":"The paper deals with the requirements of the potable water cold temperature and water exchange in water piping system inside buildings. The contribution describes the main factors influencing the hygiene of potable water in terms of its temperature and a exchange in the pipeline. In buildings, the resulting water hygienic risks can be reduced using the right technical solution. The technical measures described in the paper are usage of the automatic water flushing system, design of the potable water cold circulation and cooling system and optimization of the water pipeline distribution system inside buildings.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78599604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy Balance of a Low Energy House with Building Structures with Active Heat Transfer Control","authors":"D. Kalús, Z. Straková, Matej Kubica","doi":"10.3311/PPME.17462","DOIUrl":"https://doi.org/10.3311/PPME.17462","url":null,"abstract":"A qualitatively new dimension has been introduced to the issue of building structures for energy-efficient buildings by the system of Active Thermal Insulation (ATI), which is already applied in the construction of such buildings. ATI are embedded pipe systems in the envelope structures of buildings, into which we supply a heat-carrying medium with adjusted temperature, so this constitutes a combined building-energy system. This introduces the concept of an internal energy source understood as an energy system integrated into the zone between the static part and the thermal insulation part of the building structure envelope. Under certain conditions, the ATI can serve as a heat recuperator or as an energy collector for a heat pump application. ATI consists of pipe systems embedded in building structures, in which the medium circulates heated by energy from any heat source. The function of the system is to reduce or eliminate heat losses through non-transparent structures in the winter and at the same time to reduce or eliminate heat gains in the summer. It is especially recommended to apply heat sources using renewable energy sources due to the required low temperatures of the heating medium and thus shorten the heating period in the building. Also recommended is to apply ATI for the use of waste heat. Buildings with a given system show low energy consumption and therefore meet the requirements of Directive no. 2018/844/EU, according to which, from 01.01.2021, all new buildings for housing and civic amenities should have energy needs close to zero.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75325341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Composite Shaftless Roller Design for Conveyor System","authors":"G. Wheatley, Mohammad Zaeimi","doi":"10.3311/PPME.17554","DOIUrl":"https://doi.org/10.3311/PPME.17554","url":null,"abstract":"Improving the performance of idlers is paramount to the performance of the conveyor system in various industries since belt conveyors can be many kilometers in length and consequently there are a huge number of rollers in use. The key intention of this work is the development of a light-weight composite idler roller. Critical design considerations are strength-to-weight ratio and performance. Most importantly, the design must reduce the weight of the roller as compared to standard steel rollers. The final design provides a significant reduction in weight of about 47 % over that of traditional steel rollers of a similar size.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75883589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Sumesh, Dawood Sheriff Akbar, Hari Shankar Purandharadass, Raghunandan J. Chandrasekaran
{"title":"Optimization of Dimensional Tolerances and Material Removal Rate in the Orthogonal Turning of AISI 4340 Steel","authors":"C. Sumesh, Dawood Sheriff Akbar, Hari Shankar Purandharadass, Raghunandan J. Chandrasekaran","doi":"10.3311/PPME.16563","DOIUrl":"https://doi.org/10.3311/PPME.16563","url":null,"abstract":"Turning is one of the most used metal removal operations in the industry. It can remove material faster, giving reasonably good surface quality apart from geometrical requirements. Conformity of geometry is one of the most significant requirements of turned components to perform their intended functions. Apart from dimensional requirements, the important geometrical necessities are Circularity, Straightness, Cylindricity, Perpendicularity, etc. Since they have a direct influence on the functioning of the components, the effect of the cutting parameters on them has greater significance. In this paper experiments are carried out to examine the effect of turning parameters such as cutting speed, feed rate, and depth of cut on responses like; straightness, roundness, surface roughness, and material removal rate during turning of AISI 4340 steel. Analysis of Variance (ANOVA) is performed and the influence of parameters on each response is studied. The optimal values of parameters obtained from the study are further confirmed by conducting experiments.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86671802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}