用高速摄像机记录分析温度对壁球撞击的影响

IF 1.3 Q3 ENGINEERING, MECHANICAL
Bence Ferenc Berencsi, A. Kossa
{"title":"用高速摄像机记录分析温度对壁球撞击的影响","authors":"Bence Ferenc Berencsi, A. Kossa","doi":"10.3311/ppme.18381","DOIUrl":null,"url":null,"abstract":"Description of the impact characteristics of different types of balls has a great importance in sport science and in engineering. The primary objective of the present paper is to investigate the effect of the temperature on the impacts of different types of squash balls from a given company. The shots were performed using a self-built air-cannon. The impacts were recorded by a high-speed camera and the recorded videos were analyzed by an image-processing method based on a background subtraction technique. Summarizing the main dynamical parameters, we can conclude that increasing the initial speed will decrease the contact time, the coefficient of restitution (COR) and the rebound resilience, whereas these parameters increase at elevated temperatures. The compression tests revealed that within the low velocity range the deformation of the ball’s material and not the compression of the inner gas is the main contribution in the force needed to compress the ball. However, when the ball suffers large deformations, the internal air pressure has a huge effect on the rebound behavior. The measurements revealed that there is an optimal initial velocity distinct from the maximum one where the rebound velocity of the ball is higher than in all other cases. From the results we can state that the ball's overall stiffness grows as the temperature increases.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analyzing the Effect of Temperature on Squash Ball Impacts Using High-Speed Camera Recordings\",\"authors\":\"Bence Ferenc Berencsi, A. Kossa\",\"doi\":\"10.3311/ppme.18381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Description of the impact characteristics of different types of balls has a great importance in sport science and in engineering. The primary objective of the present paper is to investigate the effect of the temperature on the impacts of different types of squash balls from a given company. The shots were performed using a self-built air-cannon. The impacts were recorded by a high-speed camera and the recorded videos were analyzed by an image-processing method based on a background subtraction technique. Summarizing the main dynamical parameters, we can conclude that increasing the initial speed will decrease the contact time, the coefficient of restitution (COR) and the rebound resilience, whereas these parameters increase at elevated temperatures. The compression tests revealed that within the low velocity range the deformation of the ball’s material and not the compression of the inner gas is the main contribution in the force needed to compress the ball. However, when the ball suffers large deformations, the internal air pressure has a huge effect on the rebound behavior. The measurements revealed that there is an optimal initial velocity distinct from the maximum one where the rebound velocity of the ball is higher than in all other cases. From the results we can state that the ball's overall stiffness grows as the temperature increases.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppme.18381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppme.18381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

描述不同类型球的冲击特性在体育科学和工程中具有重要意义。本文的主要目的是研究温度对给定公司不同类型壁球影响的影响。射击是用一门自制的空气炮进行的。用高速摄像机记录碰撞过程,并采用基于背景减法技术的图像处理方法对所记录的视频进行分析。通过对主要动力学参数的分析,得出初始转速的增加会使接触时间、恢复系数和回弹弹性减小,而温度升高则会使这些参数增大。压缩试验表明,在低速范围内,压缩球所需的力主要是由球的材料变形而不是内部气体的压缩造成的。然而,当球遭受较大变形时,内部空气压力对回弹行为有巨大影响。测量结果表明,当球的回弹速度高于其他所有情况时,存在一个不同于最大速度的最佳初始速度。从结果可以看出,球的整体刚度随着温度的升高而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing the Effect of Temperature on Squash Ball Impacts Using High-Speed Camera Recordings
Description of the impact characteristics of different types of balls has a great importance in sport science and in engineering. The primary objective of the present paper is to investigate the effect of the temperature on the impacts of different types of squash balls from a given company. The shots were performed using a self-built air-cannon. The impacts were recorded by a high-speed camera and the recorded videos were analyzed by an image-processing method based on a background subtraction technique. Summarizing the main dynamical parameters, we can conclude that increasing the initial speed will decrease the contact time, the coefficient of restitution (COR) and the rebound resilience, whereas these parameters increase at elevated temperatures. The compression tests revealed that within the low velocity range the deformation of the ball’s material and not the compression of the inner gas is the main contribution in the force needed to compress the ball. However, when the ball suffers large deformations, the internal air pressure has a huge effect on the rebound behavior. The measurements revealed that there is an optimal initial velocity distinct from the maximum one where the rebound velocity of the ball is higher than in all other cases. From the results we can state that the ball's overall stiffness grows as the temperature increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
7.70%
发文量
33
审稿时长
20 weeks
期刊介绍: Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信