N. V. Krishna Prasad, T. Anil Babu, M. Sarma, S. Ramesh, K. Nirisha, T. Mathew, N. Madhavi
{"title":"ROLE OF POROUS NANOMATERIAL’S IN WATER PURIFICATION, ELECTRONICS, DRUG DELIVERY AND STORAGE: A COMPREHENSIVE REVIEW","authors":"N. V. Krishna Prasad, T. Anil Babu, M. Sarma, S. Ramesh, K. Nirisha, T. Mathew, N. Madhavi","doi":"10.15251/jobm.2021.131.11","DOIUrl":"https://doi.org/10.15251/jobm.2021.131.11","url":null,"abstract":"Nanoporous materials and their study gained tremendous significance in view of their potential applications such as drug delivery, water purification, biosensing, electronics and storage etc. Based on their synthesis with required shape and size make them application oriented. Nanoporous materials are materials with pore size of hundred nanometres or less. They have inorganic or organic framework supporting regular porous structure. The pores in these materials are occupied with fluid. These materials represent a transition from atom to solid in which pores of uniform shape and diameter need to be obtained for them to be used in some applications. Nanoporous materials possess specific electric, optical and magnetic properties that make them highly potential in applications related to signal transmission, energy, biological applications, catalysis, gas storage and medicine. In spite of existing nanoporous by nature tailored materials can be produced with combination of polymers with different melting points. A nanoporous material with accurate pore sizes allow certain matter to pass through, while blocking others. In view of their tailored properties they find extensive applications at present and in near future. Keeping this in mind, an attempt was made to review the potential applications of these materials with more emphasis on water treatment and drug delivery reported in the last five years in a nut shell.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43638804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. A. Abdel Hameed, M. AlElaimi, M. Qureshi, S. Al-Mhyawi, A. M. Al-bonayan, M. A. Abd El-Kader
{"title":"CORROSION INHIBITION OF STEEL IN MARINE ENVIRONMENT USING AMINO AMIDE DERIVED FROM PET PLASTIC WASTE","authors":"R. A. Abdel Hameed, M. AlElaimi, M. Qureshi, S. Al-Mhyawi, A. M. Al-bonayan, M. A. Abd El-Kader","doi":"10.15251/jobm.2021.131.1","DOIUrl":"https://doi.org/10.15251/jobm.2021.131.1","url":null,"abstract":"Inhibition of steel from corrosion process in artificial marine environment of 2.0 M sodium chloride solution using amino amide compound derived from Poly (ethylene terephthalate) plastic waste, PET. In this respect solvent free efficient green recycling of PET waste via aminolysis with 1,3-diaminopropane in the presence of (sodium acetate/acetic acid) catalyst, the product is (N, N'-Bis-(3-amino-propyl)-terephthalamide) compound as nonionic surfactant was separated in good yield, characterized by FT-IR and 1HNMR, and evaluated as green corrosion inhibitor for steel alloys used in manufacturer of petroleum pipe lines using electrochemical techniques and atomic absorption spectroscopy(AAS). Effect of inhibitor concentration and temperature were studied. The corrosion inhibition efficiency found to increases with increasing of the inhibitor concentration and decreased by rising the temperature. Potentiodynamic polarization curves indicate that the used system act as mixed inhibitor. The data of AAS show that the ferric ion Fe+3 concentrations were decreased by increasing inhibitor concentration. The inhibition of amino amide compound derived from waste is due to adsorption and adhesion of its molecules on the steel surface which obeys Langmuir desorption isotherm model.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47114328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MECHANICAL, DEGRADATION AND MORPHOLOGICAL INVESTIGATIONS ON TAMARINDUS INDICA REINFROCED POLY LACTIC ACID BIO-COMPOSITE FOR BIOMEDICAL APPLICATIONS","authors":"S. Sachin, A. Kuzmin, C. Thiruvasagam","doi":"10.15251/jobm.2020.124.121","DOIUrl":"https://doi.org/10.15251/jobm.2020.124.121","url":null,"abstract":"This research investigates the degradation and mechanical potential of Tamarindus Indiaca Fiber (TIF) reinforced into Poly Lactic Acid (PLA) resulting in a Wood Plastic Composite (WPC) that could be a potential alternative for prosthetic limbs. Fiber weight ratios at 10, 15, 20 and 25 wt%, were processed in micro and nano sizes individually through extrusion. Mechanical investigations were studied to analyze tensile, flexural, impact and hardness properties. Water Absorption Test (WAT) and Thermo Gravimetric Analysis (TGA) were performed for degradation studies. Field Emission Scanning Electron Microscope (FESEM) was used to study morphology. Nano TIF filled WPCs had superior properties than the micro TIF filled WPCs.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45835918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Alkhulaifi, M. Alwehaibi, J. Alshehri, M. Awad, N. Aldosari, A. Hendi, K. Ortashi
{"title":"RED SAND SYNTHESIZED SILVER NANOPARTICLES: CHARACTERIZATION AND THEIR BIOMEDICAL POTENTIAL","authors":"M. Alkhulaifi, M. Alwehaibi, J. Alshehri, M. Awad, N. Aldosari, A. Hendi, K. Ortashi","doi":"10.15251/jobm.2020.124.95","DOIUrl":"https://doi.org/10.15251/jobm.2020.124.95","url":null,"abstract":"Since the ability of bacteria to acquire resistance is increasing, it is important to find alternative therapeutics. One possible way to deal with this problem is the use of nanoparticles as possible alternatives to antibiotic therapy. Silver nanoparticles (AgNPs) are viewed as a novel type of antibacterial agents. AgNPs can be synthesized using raw materials, such as red sand that found in nature. Characterization of the AgNPs was achieved using variety spectroscopic and microscopic devises. AgNPs showed antibacterial activity and large effect when combined with different antibiotics against Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Proteus vulgaris.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47830784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CLEAN UP OF MALACHITE GREEN DYE IN AQUEOUS SOLUTION USING ZnO NANOPOWDER","authors":"H. Idriss, A. Alakhras","doi":"10.15251/jobm.2020.124.109","DOIUrl":"https://doi.org/10.15251/jobm.2020.124.109","url":null,"abstract":"Malachite green dye has been known to have toxic carcinogenic characteristics and potential health risks for humans even at low concentrations. Hence, it is very vital to remediate the dye before discharge into water bodies or water treatment systems. Thus, this article demonstrated the removal of cleanup of malachite green (MG)dye from the aquatic phase using ZnO nanopowder. In this work batch adsorption experiments were accomplished as a function of contact time, pH, and initial dye concentration to study the efficiency of ZnO nanopowder on dye removal (MG). The obtained nanopowder was characterized using various techniques XRD, FTIR, SEM and EDX. The results shown that the maximum absorbed value was 233.16 mg / g. The findings show that ZnO nanopowder have fast contact time and initial concentration absorbing characteristics in dye removal. The maximum capacity of sorbent was found to be 246.36 mg. Furthermore, the study revealed that ZnO nanopowder is an effective sorbent for cleanup of malachite green dye in aqueous solution when comparing with other adsorbent materials. The Adsorption and kinetics parameters of the maximum capacity of sorbent and correlation coefficient showed that the data were well fitted the to the Langmuir isotherm R2 of 0.923 models and pseudo-second-order kinetic model with R2 of 0.994 respectively.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45715743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Bush, M. H. Eisa, A. Ramizy, M. Ashari, Kh. M. Haroun, O. Aldaghri, M. D. Abd-Alla
{"title":"THE EFFECT OF GOLD NANOPARTICLES ON RADIATION DOSE DISTRIBUTION IN BREAST CANCER USING MONTE CARLO SIMULATION","authors":"H. Bush, M. H. Eisa, A. Ramizy, M. Ashari, Kh. M. Haroun, O. Aldaghri, M. D. Abd-Alla","doi":"10.15251/jobm.2020.124.101","DOIUrl":"https://doi.org/10.15251/jobm.2020.124.101","url":null,"abstract":"The simulation model for MCNP5 code was used to study the effect of the gold nanoparticle (AuNPs) in cancer breast samples. The dose rate distribution of AuNPs in water and breast phantom was calculated using MCNP5 code. For inhomogeneities, cone cells were designed to calculate dose distribution around Ir-192 source in breast and inhomogeneous medium that includes gold nanoparticles at different concentration. Both barometers, the track length energy deposition tally (F6) and pulse height tally (*F8), were used. The result indicated that the F6 is better than *F8 for radiation dose calculation. Angular doses distribution in water was compared with data published for tally F6 and*F8 with the different percentage range of 0.0136 to 0.3019% for tally F6 at the average angle of 5˚and 175˚respectively. For *F8 tally, different percentage range of - 0.0014 to 0.8253 % was obtained at an average angle of 75˚and 5˚ respectively. For breast phantom, the result of the F6 tally with the *F8 tally was compared. The difference in calculations between the two tallies in the angular anisotropic distribution was found to be in the range from 0.0514 to 0.4596% at the average angle of 15 ˚ and 175 ˚ respectively. The obtained results showed that the AuNP dose increases when the concentration increases up to ten percent (100 mg/ml), and then decreases for concentration higher than ten percent. The concentration of AuNPs greater than ten percent is not recommended. The results indicated that tally F6 is a good tool to calculate the effect of inhomogeneities due to breast cancer on brachytherapy.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45941641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EVALUATION OF THE DESTRUCTION POTENTIAL OF Zr-DOPED TiO2NANOPARTICLES FOR THE ABATEMENT of H2S GAS","authors":"N. Shahzad, N. Ali, N. Ahmad","doi":"10.15251/jobm.2020.123.89","DOIUrl":"https://doi.org/10.15251/jobm.2020.123.89","url":null,"abstract":"Due to its toxicity, destruction of H2S gas has been an important topic of researchers. Many studies have been carried for investigating various techniques for the removal of this gas. One of those techniques is catalytic and photocatalytic destruction of H2S gas using various catalysts including TiO2 owing to its significant potential for degradation of various pollutants. This study investigates the destruction potential of Zr doped TiO2 for the abatement of H2S gas. The catalysts were characterized using different techniques like XRD, SEM, XRF. The catalytic experiments were performed using fixed bed catalyst system. The samples were analyzed using GC-MC technique and it was revealed that the Zr doping of TiO2 did not favour positively towards enhancing the H2S destruction potential as found in other studies.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42975424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PROPERTIES OF CARBON NANOTUBES DOPED WITH GADOLINIUM","authors":"Rashad Gabil Abaszade, О. Kapush, A. Nabiev","doi":"10.15251/jobm.2020.123.61","DOIUrl":"https://doi.org/10.15251/jobm.2020.123.61","url":null,"abstract":"An analysis of some properties of carbon nanotubes using X-ray diffraction analysis, Raman scattering, and IR luminescence is given. After doping with gadolinium the peak intensities in X-ray and Raman spectra drastically increase. It was found that 15% doping with gadolinium strongly affects the physical properties of carbon nanotubes functionalized by a carboxyl group.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45458350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TEMPERATURE DEPENDENT CHARACTERISTICS OF SrAl2O4:Dy 3+PHOSPHOR","authors":"S. Tongbram, S. D. Singh, B. Tongbram, B. Sharma","doi":"10.15251/jobm.2020.123.51","DOIUrl":"https://doi.org/10.15251/jobm.2020.123.51","url":null,"abstract":"We report the detailed temperature-dependent characteristics of Dy3+ doped SrAl2O4 phosphor. The phosphor synthesised using precipitation method was annealed at three different temperatures, specifically 800ºC, 900ºC, and 1000ºC. The three samples were analyzed using XRD, SEM, TEM, RAMAN, and FTIR. The observed photoluminescence emissions were consisting of peaks arising from the host SrAl2O4 as well as the dopant Dy3+. The crystallite sizes were found to be 27.22nm, 29.74nm, and 31.24nm, respectively, with the increase in annealing temperature. SEM, TEM images showed nearspherical, rod-like shapes of the crystals, and SAED confirmed the crystals were single-crystal. CIE analysis results showed that the colour coordinate was found to be very close to white colour in the three annealing temperatures, which is an advantage in the field of technology development.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41432379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"SYNTHESIS AND STRUCTURAL ANALYSIS OF InSb-CrSb, InSb-Sb, GaSb-CrSb EUTECTIC COMPOSITES","authors":"M. Kazimov","doi":"10.15251/jobm.2020.123.67","DOIUrl":"https://doi.org/10.15251/jobm.2020.123.67","url":null,"abstract":"İnSb-CrSb, İnSb-Sb, GaSb-CrSb eutectic composites are synthesized by the vertical Bridgman method. The existence interphase zones around metallic inclusions in GaSb-CrSb, InSb-CrSb and InSb-Sb eutectic composites have been establishedby study of the structure and elemental composition. It has been found that the peaks detected in the Raman spectra corresponded to the GaSb and InSb compounds and Sb-Sb bond.","PeriodicalId":43605,"journal":{"name":"Journal of Optoelectronic and Biomedical Materials","volume":" ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43881287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}