Zhen Zhang, Feng Yang, Xiawei Shao, J. Gu, G. Zha, Haoyun Tu, Bin Xie
{"title":"Finite Element Analysis and Life Prediction of Pre-stressed Composed Dies in Cold Extrusion Process","authors":"Zhen Zhang, Feng Yang, Xiawei Shao, J. Gu, G. Zha, Haoyun Tu, Bin Xie","doi":"10.1142/s1756973721420014","DOIUrl":"https://doi.org/10.1142/s1756973721420014","url":null,"abstract":"Improving and stabilizing the life of the die has always been the key to increasing the output of cold precision forging products and reducing the production cost of forgings. The stress state in pre-stressed composed dies during cold extrusion process is investigated in this paper, it shows that the combined die can greatly reduce the tangential tensile stress of the inner wall of the die and reduce the strain energy density of the die, thereby improving the strength of the die and extending the life of the die. By increasing the number of pre-stressed rings, the amount of interference can be changed, which indirectly changes the pre-stress applied to the die. The relationship between the die fatigue life and the number of pre-stressed rings indicates that the design of the pre-stressed composed structure above the inflection point is an excess design, and the optimal design should be near the inflection point.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42266686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ANFIS-based Models for Coating Quality Prediction for Thin-Film Deposition Processes","authors":"Partha Protim Das, Soham Das, Premchand Kumar Mahto, Dhruva Kumar, Manish Kumar Roy","doi":"10.1142/s1756973721500074","DOIUrl":"https://doi.org/10.1142/s1756973721500074","url":null,"abstract":"Thin-film deposition processes have gained much popularity due to their unique capability to enhance the physical and chemical properties of various materials. Identification of the best parametric combination for a deposition process to achieve desired coating quality is often considered to be challenging due to the involvement of a large number of input process parameters and conflicting responses. This study discusses the development of adaptive neuro-fuzzy inference system-based models for the prediction of quality measures of two thin-film deposition processes, i.e., SiCN thin-film coating using thermal chemical vapor deposition (CVD) process and Ni–Cr alloy thin-film coating using direct current magnetron sputtering process. The predicted response values obtained from the developed models are validated and compared based on actual experimental results which exhibit a very close match between both the values. The corresponding surface plots obtained from the developed models illustrate the effect of each process parameter on the considered responses. These plots will help the operator in selecting the best parametric mix to achieve enhanced coating quality. Also, analysis of variance results identifies the importance of each process parameter in the determination of response values. The proposed approach can be applied to various deposition processes for modeling and prediction of observed response values. It will also assist as an operator in selecting the best parametric mix for achieving desired response values.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64017364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homogenization and Correctors for Stochastic Hyperbolic Equations in Domains with Periodically Distributed Holes","authors":"Mogtaba Mohammed, W. Khan","doi":"10.1142/s1756973721500086","DOIUrl":"https://doi.org/10.1142/s1756973721500086","url":null,"abstract":"The goal of this paper is to present new results on homogenization and correctors for stochastic linear hyperbolic equations in periodically perforated domains with homogeneous Neumann conditions on the holes. The main tools are the periodic unfolding method, energy estimates, probabilistic and deterministic compactness results. The findings of this paper are stochastic counterparts of the celebrated work [D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains, Port. Math. (N.S.) 63 (2006) 467–496]. The convergence of the solution of the original problem to a homogenized problem with Dirichlet condition has been shown in suitable topologies. Homogenization and convergence of the associated energies results recover the work in [M. Mohammed and M. Sango, Homogenization of Neumann problem for hyperbolic stochastic partial differential equations in perforated domains, Asymptot. Anal. 97 (2016) 301–327]. In addition to that, we obtain corrector results.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41796671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Size Effects on Droplet Displacing Process in Micropores by Multiscale Modeling","authors":"Fanli Liu, Moran Wang","doi":"10.1142/s1756973721410018","DOIUrl":"https://doi.org/10.1142/s1756973721410018","url":null,"abstract":"Transport mechanisms of small droplets on walls in micropores become significant for applications in energy, resource and biomedical engineering, however, a suitable numerical tool remains challenging. Macroscopic approach is ideal both in computing cost and simplicity but its applicability is doubted for nanoscale droplet, yet no clear evaluation on when exactly does it become invalid has been made. This work evaluates the applicability of macroscopic approach for the displacing process of droplet in a micropore and investigates relevant size effects, by comparing the simulation results of multiscale modeling and macroscopic method. Three types of size effects affecting the displacement results are identified: Laplace pressure, low interfacial density, and breakdown of macroscopic description. For the system studied, the Laplace pressure dominates for relatively big droplet, then low density region becomes significant for drop diameter smaller than 18 times molecule diameter, and finally macroscopic description gradually fails for drop diameter smaller than 13 times molecule diameter. We further investigate the influences of system scale and fluid type on these size effects and discuss the relative importance of each size effect under different conditions. Results indicate that traditional macroscopic approach may be invalid even when continuum assumption still holds due to other size effects, and corrections for those effects can be made to extend the applicability of macroscopic method.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41706352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Use of Principal Component Analysis for the Prediction of Double Halide Perovskites A2BX6","authors":"Mohamed Boubchir, R. Boubchir, H. Aourag","doi":"10.1142/S1756973721500049","DOIUrl":"https://doi.org/10.1142/S1756973721500049","url":null,"abstract":"In this paper, we report a comprehensive and systematic study for predicting the formability of double halide perovskites. Besides the tolerance factor, several complementary criteria for the formation and lattice distortion have been developed and compared with a throughout multivariate technique based on the principal component analysis (PCA) and the partial least square (PLS) methods. Some empirical equations expressing the relationships between the different ionic radii and the electronegativities and the lattice constants of double halide perovskites have been found.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47392672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parvaiz Ahmad Naik, K. M. Owolabi, J. Zu, Mehraj-ud-din Naik
{"title":"Modeling the Transmission Dynamics of COVID-19 Pandemic in Caputo Type Fractional Derivative","authors":"Parvaiz Ahmad Naik, K. M. Owolabi, J. Zu, Mehraj-ud-din Naik","doi":"10.1142/s1756973721500062","DOIUrl":"https://doi.org/10.1142/s1756973721500062","url":null,"abstract":"COVID-19 disease, a deadly pandemic ravaging virtually throughout the world today, is undoubtedly a great calamity to human existence. There exists no complete curative medicine or successful vaccines that could be used for the complete control of this deadly pandemic at the moment. Consequently, the study of the trends of this pandemic is critical and of great importance for disease control and risk management. Computation of the basic reproduction number by means of mathematical modeling can be helpful in estimating the potential and severity of an outbreak and providing insightful information which is useful to identify disease intensity and necessary interventions. Considering the enormity of the challenge and the burdens which the spread of this COVID-19 disease placed on healthcare system, the present paper attempts to study the pattern and the trend of spread of this disease and prescribes a mathematical model which governs COVID-19 pandemic using Caputo type derivative. Local stability of the equilibria is also discussed in the paper. Some numerical simulations are given to illustrate the analytical results. The obtained results shows that applied numerical technique is computationally strong for modeling COVID-19 pandemic.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45787115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of Cyclic Loading Effects on Residual Stress Relaxation in Offshore Wind Welded Structures","authors":"G. Statti, A. Mehmanparast, R. Biswal, C. Rizzo","doi":"10.1142/S1756973721500050","DOIUrl":"https://doi.org/10.1142/S1756973721500050","url":null,"abstract":"Monopile foundations contain welding residual stresses and are widely used in industry to support offshore wind turbines (OWTs). The monopiles are subjected to hammering loads during installation and cyclic loads during operation, therefore the influence of residual stress redistribution as a result of fatigue cycles must be evaluated in these structures. The existing empirical models to predict the residual stress redistribution in the presence of cyclic loading conditions are strongly dependent on the material, welding process and loading conditions. Hence, there is a need to predict the residual stress redistribution using finite element simulations. In this study numerical analyses have been conducted to predict the initial state of residual stress in a simplified weld geometry and examine the influence of subsequent cyclic loads on the relaxation behavior in residual stress profiles. The results have shown that fatigue cycles have a severe effect on residual stress relaxation with the greatest reduction in residual stress values observed in the first cycle. Moreover, the numerical prediction results have shown that the stress amplitude plays a key role in the extent of residual stress relaxation in welded structures.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45915448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A High-Temperature Digital Image Correlation Method and its Application on Strain Measurement of Film Cooling Holes","authors":"Zixu Guo, Ziyuan Song, Dawei Huang, Xiaojun Yan","doi":"10.1142/s1756973721500037","DOIUrl":"https://doi.org/10.1142/s1756973721500037","url":null,"abstract":"In this paper, a digital image correlation (DIC) method is developed and applied on film cooling holes in the submillimeter scale in high temperature. Compared with the traditional DIC method, the speckle patterning method and the optical system are improved. In detail, a kind of high temperature-resistant black paint is selected as the basecoat, and the white ZrO2 particles are evenly distributed on the specimen using high-pressure splashing method. Besides, to eliminate the radiation effect of the high-temperature specimen, the blue light source is used to illuminate the specimen, and the optical bandpass filter is placed in front of the camera to allow the blue light passing. In order to verify the DIC method, the strain measurement on a specimen with single skew hole is performed. The relative error in high temperature of the maximum strain between the measurement results and the numerical simulation results given by the finite element method (FEM) is 12%. The strain concentration factor of the single skew hole is measured as 1.83. Finally, the developed method is applied to the strain measurement of the structure with multiple film cooling holes in 870°C. The X-shape strain distribution can be observed at the hole with maximum stress, which suggests that the strain field of multiple holes has coupling effect. In addition, the strain concentration factor of multiple film cooling holes increases to 2.34.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44209615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystal Plasticity Finite Element Method for Cyclic Behavior of Single Crystal Nickel-Based Superalloy","authors":"Xiao-yi Qin, G. Han, S. Xia, Weijie Liu, D. Lin","doi":"10.1142/S1756973721500025","DOIUrl":"https://doi.org/10.1142/S1756973721500025","url":null,"abstract":"This paper reports the modeling and simulation of cyclic behavior of single crystal nickel-based superalloy by using the crystal plasticity finite element method. Material constitutive model based on the crystal plasticity theory is developed and is implemented in a parallel way as user subroutine modules embedded in the commercial Abaqus[Formula: see text] software. For simplicity in calibration and without loss of generality, the crystal plasticity constitutive relationship used in this work takes the form that only contains a few parameters. The parameters are optimized by using the Powell algorithm. We employ the calibrated constitutive model with the finite element solver on a cuboid and a blade to simulate cyclic and anisotropic properties of single crystal superalloy. Results show that the predicted stress–strain curves are in good agreement with the experimental measurements, and anisotropic results are presented in both elastic and plastic regions.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47496856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fitness-for-Service Assessment Approach for Ageing Pipeline Section Based on Sparse Historical Data","authors":"T. Naraghi, M. Najib, A. S. Nobari, K. Nikbin","doi":"10.1142/S1756973721500013","DOIUrl":"https://doi.org/10.1142/S1756973721500013","url":null,"abstract":"Fitness-for-service (FFS) assessment is a common evaluation methodology in oil and gas industries to assess the integrity of in-service structures that may contain flaws, metal thinning and pitting damage. However, given the level of unknowns or missing information in the industry deterministic predictions are unacceptable and invariably the lower bound values could also be substantially conservative. The aim of this work is to develop a generic process to ensure, within a level of confidence, the operational safety and integrity of aging gas or oil pipelines sections based on available data. Fitness for service procedure according to “API 579-1/ASME FFS-1” is performed using local metal loss and micro-cracking to predict a range of safe life for the ageing pipeline operated for around 40 years. The mean value predictions of the present assessment indicate that the flaws away from the weld are within an acceptable boundary which implies the pipes would be fit to continue in operation and at least have 10 years remaining life, whilst the flaws near the weld need to be repaired as soon as possible. This is based on the best average values for the NDE and material property results available. However, adopting extreme caution in the analysis will render the pipes obsolete and ready for replacement. Understanding the risks to be taken in such situations becomes an expert system decision based not just on the FFS analysis but on both quantitative historical data, loading history, material degradation due to environment, corrosion rates and metallurgical analysis in addition to qualitative experience collected from other databases and pipes failure data. Beyond such a procedure the safe option would be a full burst pressure testing of the length of pipeline in question to identify possible leaks of old pipes.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44582182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}