Dung Nguyen-Trong, Cuong Nguyen-Chinh, Van Duong-Quoc
{"title":"Study on the Effect of Doping on Lattice Constant and Electronic Structure of Bulk AuCu by the Density Functional Theory","authors":"Dung Nguyen-Trong, Cuong Nguyen-Chinh, Van Duong-Quoc","doi":"10.1142/s1756973720300014","DOIUrl":"https://doi.org/10.1142/s1756973720300014","url":null,"abstract":"This paper studies the effect of GGA-PBE, GGA-PBEsol, GGA-PW91, GGA-VWN-BP, LDA-PWC, LDA-VWN parameterized exchange–correlation functionals and Cu impurity concentration on the lattice and electron...","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"11 1","pages":"2030001"},"PeriodicalIF":1.5,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s1756973720300014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48140611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Refinement of the Maxwell Formula for Fiber-Reinforced Composites","authors":"A. Kalamkarov, I. Andrianov, G. Starushenko","doi":"10.1142/S175697371950001X","DOIUrl":"https://doi.org/10.1142/S175697371950001X","url":null,"abstract":"The effective properties of the fiber-reinforced composite materials with fibers of square cross-section are investigated. The novel formula for the effective coefficient of thermal conductivity refining the classical Maxwell formula (MF) is derived. The methods of asymptotic homogenization, boundary shape perturbation and Schwarz alternating process are applied. It is shown that the principal term of the asymptotic expansion of the refined formula in powers of small size of inclusions coincides with the classical MF. The corrections to the MF are obtained for different values of geometrical and physical properties of the constituents of the composite material. The analytical and numerical analyses are carried out and illustrated graphically. In particular, the derived refined formula and the MF are compared for the limiting values of the geometric dimensions and physical properties of the composite. It is shown that the refined formula is applicable for the inclusions with any conductivity in the entire range of the geometric sizes of inclusions, including the limiting cases of inclusions with zero thermal conductivity and maximally large inclusions.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S175697371950001X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44994788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accelerator-Based Methods in Radio-Material 99Mo/99mTc Production Alternatives by Monte Carlo Method: The Scientific-Expedient Considerations in Nuclear Medicine","authors":"A. Khorshidi","doi":"10.1142/S1756973719300016","DOIUrl":"https://doi.org/10.1142/S1756973719300016","url":null,"abstract":"Some accelerator technologies are already used for commercial [Formula: see text]Mo-99mTc production, as the economic criteria are considered representative of the main differences between diverse technologies including accelerators and reactors. This study has provided a review of known and potential [Formula: see text]Mo production using conventional medical facilities. Accelerator-based method in 99mTc production via ([Formula: see text], [Formula: see text]) direct reaction on [Formula: see text]Mo was simulated using 18[Formula: see text]MeV proton beam. Meanwhile, a conceptual design for indirect [Formula: see text]Mo production via [Formula: see text]Mo([Formula: see text])[Formula: see text]Mo and [Formula: see text]Mo(n,[Formula: see text]2n)[Formula: see text]Mo reactions was investigated when an electron source of 35[Formula: see text]MeV by accelerator is used. These indirect reactions were explored via inserted [Formula: see text]Mo samples at different positions inside the lead region. Furthermore, Adiabatic Resonance Crossing (ARC) method based on proton accelerator via transmutation in [Formula: see text]Mo([Formula: see text]Mo was examined when the 30[Formula: see text]MeV proton beam is used. Saturation activity and yield were investigated using alternative proposed methods. The potential proliferation risk associated with accelerator technetium production is minimal. While accelerators could be turned into neutron sources which could in turn be used to irradiate [Formula: see text]U to breed plutonium, and centrifuges used to enrich [Formula: see text]Mo for targets could conceivably be turned to enriching uranium, this would result in very tiny global production capability particularly compared with research or power reactors. The potential of the fresh methods could provide a replacement or complement over current reactor-based supply sources in various radioisotopes production purposes.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973719300016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48205182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fausto Raschioni, R. Longo, A. Mehmanparast, C. Rizzo
{"title":"Mooring System Design and Verification for a Floating Vertical Axis Wind Turbine","authors":"Fausto Raschioni, R. Longo, A. Mehmanparast, C. Rizzo","doi":"10.1142/s1756973720500031","DOIUrl":"https://doi.org/10.1142/s1756973720500031","url":null,"abstract":"The aim of this study is to investigate the technical feasibility of an innovative vertical axis floating wind turbine concept with the main focus on the design and verification of the mooring system. The study is developed through iterative processes in order to identify the optimum design for the new floating wind turbine concept. The Ultimate Limit State (ULS) criteria have been considered to verify the integrity of the mooring system in the extreme environmental conditions with a 50-year return period. For this purpose, time domain dynamic analysis has been performed using the commercial software OrcaFlex [Orcina website, OrcaFlex software, https://www.orcina.com/ ]. Although the analysis is carried out for a specific site deemed suitable for the project, the results can be used as an input for any future application in other locations. The present study is intended to be a proof of concept with a proposed scientific framework for optimization of the mooring system which is considered to be a crucial part in the design of floating wind turbines due to their complex dynamic behavior.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s1756973720500031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49124511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
François Dagry, A. Mehmanparast, Patrick Müller, Klaus Pantke
{"title":"Fracture Mechanics Assessment of Large Diameter Wind Turbine Bearings","authors":"François Dagry, A. Mehmanparast, Patrick Müller, Klaus Pantke","doi":"10.1142/S1756973718500105","DOIUrl":"https://doi.org/10.1142/S1756973718500105","url":null,"abstract":"The structural integrity of large diameter wind turbine bearings have been investigated using the built-in “contour integral” tool in ABAQUS finite element software package by modeling three-dimens...","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"10 1","pages":"1850010"},"PeriodicalIF":1.5,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973718500105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47188658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Determination of Secondary Dendrite Arm Spacing for In-738LC Gas-Tungsten-Arc-Welds","authors":"E. Bonifaz, J. M. Conde, A. Czekanski","doi":"10.1142/S1756973718500129","DOIUrl":"https://doi.org/10.1142/S1756973718500129","url":null,"abstract":"Microstructure and defect development in the gas tungsten arc weld process is influenced by the solidification and melt-pool dynamics. Melt-pool geometrical parameters which depend mainly on heat i...","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"10 1","pages":"1850012"},"PeriodicalIF":1.5,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973718500129","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42033485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sequential Linear Analysis for the Prediction of the Symmetrical or Non-Symmetrical Character of the Debond Onset and Propagation Along a Fiber-Matrix Interface","authors":"L. Moreno, L. Távara, E. Correa, F. París","doi":"10.1142/S1756973718420040","DOIUrl":"https://doi.org/10.1142/S1756973718420040","url":null,"abstract":"In this work, a recently proposed numerical tool is used to predict the onset and growth of debonds appearing along a single glass/carbon fiber embedded in an epoxy matrix subjected to transverse loads. The fiber-matrix system is modelled using the FEA commercial code ABAQUS, together with a solving algorithm programmed in Python and named Sequential Linear Analysis (SLA). Besides, the interface behavior is modeled using the Linear Elastic Brittle Interface Model (LEBIM) included in ABAQUS by means of a UMAT subroutine. The developed models are able to reproduce the non-symmetrical (one-side) debond at the fiber-matrix interface. Moreover, the results obtained show that the appearance of a unilateral debond may be affected both by the material employed and the size of the matrix cell where the fiber is embedded.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973718420040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45921857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overview of Gc Tests Used to Evaluate Composite–Composite Adhesive Joints","authors":"J. Cañas, L. Távara, A. Blázquez, A. Estefani","doi":"10.1142/S1756973718420027","DOIUrl":"https://doi.org/10.1142/S1756973718420027","url":null,"abstract":"The quality of composite–composite bonded joints is a very important issue for industries, especially for the aerospace sector. A deficient joint may stop the manufacturing process and its repairing may include very high costs. Nowadays, the quality of the joint is obtained by means of interlaminar fracture toughness tests, estimating the [Formula: see text] value (Energy Release Rate used to produce crack propagation) over coupons with (theoretically) the same conditions as those included in an actual part. Usually, [Formula: see text] is obtained by means of a Double Cantilever Beam (DCB) test. Although DCB is the reference test, it may present some drawbacks when a non-symmetrical coupon is used and when the adherents stiffness is low. An alternative to DCB is the Climbing Drum Peel (CDP) test which is able to address some of the DCB drawbacks. Nevertheless, both tests need the use of a universal testing machine, then they cannot be done in situ. In the present investigation, DCB and CDP main characteristics are analyzed and a new device, called Horizontal Drum Peel (HDP), which includes the advantages of previous tests and the possibility to perform the test over an actual part is presented.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973718420027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44490726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preface","authors":"Elena Correa Montoto, L. Rodríguez-Tembleque","doi":"10.1142/s1756973718020031","DOIUrl":"https://doi.org/10.1142/s1756973718020031","url":null,"abstract":"","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45674117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanomechanics Modeling of Interface Interactions in Asphalt Concrete: Traction and Shearing Failure Study","authors":"Yang Lu, Linbing Wang","doi":"10.1142/S1756973718410044","DOIUrl":"https://doi.org/10.1142/S1756973718410044","url":null,"abstract":"The interface bonding strength is critical for asphalt concrete performance under external load applications. A thorough understanding of the load transfer mechanism bridging the nanoscale interfacial details and the macroscale properties is required to accurately predict the performance of asphalt concrete. This research presents a multiscale analysis procedure for the modeling of interface behaviors, in which material properties are evaluated by atomic scale interactions, emphasizing the complex shearing and separation mechanisms under various loading modes. The representative model system was established based on multiscale experimental characterization of the tight-bonding interface between asphalt and aggregate. Interfacial load transfer and failure studies were conducted for investigating the effect of tension and compression on shearing mode separation. The cohesive zone model parameters, such as peak traction and energy of separation were evaluated for each loading mode. Different boundary conditions were applied to obtain the representative volume element (RVE) and connection to continuum level properties. Results indicated that depending on the various loading modes, the failure of the nanoscale interface system may occur within the asphalt phase or at the interface. These results set the basis for continuum length-scale micromechanical models which may be used to determine the bulk material response, incorporating interfacial phenomena. The findings presented in this paper are consistent with observations reported in previous studies and expand on the understanding of the relationship between molecular structures and combined shearing separation failure properties of asphalt concrete interfaces.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973718410044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44572987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}