Computational Homogenization of Heterogeneous Materials by a Novel Hybrid Numerical Scheme

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Cascio, M. Grifò, A. Milazzo, I. Benedetti
{"title":"Computational Homogenization of Heterogeneous Materials by a Novel Hybrid Numerical Scheme","authors":"M. Cascio, M. Grifò, A. Milazzo, I. Benedetti","doi":"10.1142/s1756973720500080","DOIUrl":null,"url":null,"abstract":"The Virtual Element Method (VEM) is a recent numerical technique capable of dealing with very general polygonal and polyhedral mesh elements, including irregular or non-convex ones. Because of this feature, the VEM ensures noticeable simplification in the data preparation stage of the analysis, especially for problems whose analysis domain features complex geometries, as in the case of computational micro-mechanics problems. The Boundary Element Method (BEM) is a well known, extensively used and effective numerical technique for the solution of several classes of problems in science and engineering. Due to its underlying formulation, the BEM allows reducing the dimensionality of the problem, resulting in substantial simplification of the pre-processing stage and in the reduction of the computational effort, without jeopardizing the solution accuracy. In this contribution, we explore the possibility of a coupling VEM and BEM for computational homogenization of heterogeneous materials with complex microstructures. The test morphologies consist of unit cells with irregularly shaped inclusions, representative e.g., of a fiber-reinforced polymer composite. The BEM is used to model the inclusions, while the VEM is used to model the surrounding matrix material. Benchmark finite element solutions are used to validate the analysis results.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1756973720500080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

The Virtual Element Method (VEM) is a recent numerical technique capable of dealing with very general polygonal and polyhedral mesh elements, including irregular or non-convex ones. Because of this feature, the VEM ensures noticeable simplification in the data preparation stage of the analysis, especially for problems whose analysis domain features complex geometries, as in the case of computational micro-mechanics problems. The Boundary Element Method (BEM) is a well known, extensively used and effective numerical technique for the solution of several classes of problems in science and engineering. Due to its underlying formulation, the BEM allows reducing the dimensionality of the problem, resulting in substantial simplification of the pre-processing stage and in the reduction of the computational effort, without jeopardizing the solution accuracy. In this contribution, we explore the possibility of a coupling VEM and BEM for computational homogenization of heterogeneous materials with complex microstructures. The test morphologies consist of unit cells with irregularly shaped inclusions, representative e.g., of a fiber-reinforced polymer composite. The BEM is used to model the inclusions, while the VEM is used to model the surrounding matrix material. Benchmark finite element solutions are used to validate the analysis results.
用一种新的混合数值格式计算非均质材料的均匀化
虚元法(VEM)是一种新兴的数值计算技术,能够处理非常普遍的多边形和多面体网格单元,包括不规则或非凸网格单元。由于这一特征,VEM确保了分析数据准备阶段的显著简化,特别是对于分析领域具有复杂几何形状的问题,如计算微力学问题。边界元法(BEM)是一种众所周知的、广泛使用的、有效的数值技术,用于解决科学和工程中的几类问题。由于其基本公式,边界元法允许降低问题的维度,从而大大简化了预处理阶段,减少了计算工作量,而不会损害解决方案的准确性。在这篇贡献中,我们探索了耦合VEM和BEM的可能性,用于具有复杂微观结构的非均质材料的计算均匀化。测试形态包括具有不规则形状内含物的单元胞,例如纤维增强聚合物复合材料的代表性。边界元法用于对夹杂物进行建模,而VEM法用于对周围基体材料进行建模。采用基准有限元解对分析结果进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信