{"title":"A General Framework for Distributional Similarity","authors":"Julie Weeds, David J. Weir","doi":"10.3115/1119355.1119366","DOIUrl":"https://doi.org/10.3115/1119355.1119366","url":null,"abstract":"We present a general framework for distributional similarity based on the concepts of precision and recall. Different parameter settings within this framework approximate different existing similarity measures as well as many more which have, until now, been unexplored. We show that optimal parameter settings outperform two existing state-of-the-art similarity measures on two evaluation tasks for high and low frequency nouns.","PeriodicalId":428824,"journal":{"name":"Proceedings of the 2003 conference on Empirical methods in natural language processing -","volume":"277 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132738575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation and Extension of Maximum Entropy Models with Inequality Constraints","authors":"Jun'ichi Kazama, Junichi Tsujii","doi":"10.3115/1119355.1119373","DOIUrl":"https://doi.org/10.3115/1119355.1119373","url":null,"abstract":"A maximum entropy (ME) model is usually estimated so that it conforms to equality constraints on feature expectations. However, the equality constraint is inappropriate for sparse and therefore unreliable features. This study explores an ME model with box-type inequality constraints, where the equality can be violated to reflect this unreliability. We evaluate the inequality ME model using text categorization datasets. We also propose an extension of the inequality ME model, which results in a natural integration with the Gaussian MAP estimation. Experimental results demonstrate the advantage of the inequality models and the proposed extension.","PeriodicalId":428824,"journal":{"name":"Proceedings of the 2003 conference on Empirical methods in natural language processing -","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114772387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongyan Jing, Radu Florian, Xiaoqiang Luo, Tong Zhang, Abraham Ittycheriah
{"title":"HowtogetaChineseName(Entity): Segmentation and Combination Issues","authors":"Hongyan Jing, Radu Florian, Xiaoqiang Luo, Tong Zhang, Abraham Ittycheriah","doi":"10.3115/1119355.1119381","DOIUrl":"https://doi.org/10.3115/1119355.1119381","url":null,"abstract":"When building a Chinese named entity recognition system, one must deal with certain language-specific issues such as whether the model should be based on characters or words. While there is no unique answer to this question, we discuss in detail advantages and disadvantages of each model, identify problems in segmentation and suggest possible solutions, presenting our observations, analysis, and experimental results. The second topic of this paper is classifier combination. We present and describe four classifiers for Chinese named entity recognition and describe various methods for combining their outputs. The results demonstrate that classifier combination is an effective technique of improving system performance: experiments over a large annotated corpus of fine-grained entity types exhibit a 10% relative reduction in F-measure error.","PeriodicalId":428824,"journal":{"name":"Proceedings of the 2003 conference on Empirical methods in natural language processing -","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122298110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using LTAG Based Features in Parse Reranking","authors":"Libin Shen, Anoop Sarkar, A. Joshi","doi":"10.3115/1119355.1119367","DOIUrl":"https://doi.org/10.3115/1119355.1119367","url":null,"abstract":"We propose the use of Lexicalized Tree Adjoining Grammar (LTAG) as a source of features that are useful for reranking the output of a statistical parser. In this paper, we extend the notion of a tree kernel over arbitrary sub-trees of the parse to the derivation trees and derived trees provided by the LTAG formalism, and in addition, we extend the original definition of the tree kernel, making it more lexicalized and more compact. We use LTAG based features for the parse reranking task and obtain labeled recall and precision of 89.7%/90.0% on WSJ section 23 of Penn Treebank for sentences of length ≤ 100 words. Our results show that the use of LTAG based tree kernel gives rise to a 17% relative difference in f-score improvement over the use of a linear kernel without LTAG based features.","PeriodicalId":428824,"journal":{"name":"Proceedings of the 2003 conference on Empirical methods in natural language processing -","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125244326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}