不等式约束下最大熵模型的评价与推广

Jun'ichi Kazama, Junichi Tsujii
{"title":"不等式约束下最大熵模型的评价与推广","authors":"Jun'ichi Kazama, Junichi Tsujii","doi":"10.3115/1119355.1119373","DOIUrl":null,"url":null,"abstract":"A maximum entropy (ME) model is usually estimated so that it conforms to equality constraints on feature expectations. However, the equality constraint is inappropriate for sparse and therefore unreliable features. This study explores an ME model with box-type inequality constraints, where the equality can be violated to reflect this unreliability. We evaluate the inequality ME model using text categorization datasets. We also propose an extension of the inequality ME model, which results in a natural integration with the Gaussian MAP estimation. Experimental results demonstrate the advantage of the inequality models and the proposed extension.","PeriodicalId":428824,"journal":{"name":"Proceedings of the 2003 conference on Empirical methods in natural language processing -","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"124","resultStr":"{\"title\":\"Evaluation and Extension of Maximum Entropy Models with Inequality Constraints\",\"authors\":\"Jun'ichi Kazama, Junichi Tsujii\",\"doi\":\"10.3115/1119355.1119373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A maximum entropy (ME) model is usually estimated so that it conforms to equality constraints on feature expectations. However, the equality constraint is inappropriate for sparse and therefore unreliable features. This study explores an ME model with box-type inequality constraints, where the equality can be violated to reflect this unreliability. We evaluate the inequality ME model using text categorization datasets. We also propose an extension of the inequality ME model, which results in a natural integration with the Gaussian MAP estimation. Experimental results demonstrate the advantage of the inequality models and the proposed extension.\",\"PeriodicalId\":428824,\"journal\":{\"name\":\"Proceedings of the 2003 conference on Empirical methods in natural language processing -\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"124\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 conference on Empirical methods in natural language processing -\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1119355.1119373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 conference on Empirical methods in natural language processing -","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119355.1119373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 124

摘要

通常对最大熵(ME)模型进行估计,使其符合特征期望的相等约束。然而,等式约束不适用于稀疏且不可靠的特征。本研究探讨了一个具有盒型不等式约束的ME模型,其中不等式可以被违反以反映这种不可靠性。我们使用文本分类数据集评估不平等ME模型。我们还提出了不等式ME模型的扩展,得到了与高斯MAP估计的自然积分。实验结果证明了不等式模型及其推广方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation and Extension of Maximum Entropy Models with Inequality Constraints
A maximum entropy (ME) model is usually estimated so that it conforms to equality constraints on feature expectations. However, the equality constraint is inappropriate for sparse and therefore unreliable features. This study explores an ME model with box-type inequality constraints, where the equality can be violated to reflect this unreliability. We evaluate the inequality ME model using text categorization datasets. We also propose an extension of the inequality ME model, which results in a natural integration with the Gaussian MAP estimation. Experimental results demonstrate the advantage of the inequality models and the proposed extension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信