Using LTAG Based Features in Parse Reranking

Libin Shen, Anoop Sarkar, A. Joshi
{"title":"Using LTAG Based Features in Parse Reranking","authors":"Libin Shen, Anoop Sarkar, A. Joshi","doi":"10.3115/1119355.1119367","DOIUrl":null,"url":null,"abstract":"We propose the use of Lexicalized Tree Adjoining Grammar (LTAG) as a source of features that are useful for reranking the output of a statistical parser. In this paper, we extend the notion of a tree kernel over arbitrary sub-trees of the parse to the derivation trees and derived trees provided by the LTAG formalism, and in addition, we extend the original definition of the tree kernel, making it more lexicalized and more compact. We use LTAG based features for the parse reranking task and obtain labeled recall and precision of 89.7%/90.0% on WSJ section 23 of Penn Treebank for sentences of length ≤ 100 words. Our results show that the use of LTAG based tree kernel gives rise to a 17% relative difference in f-score improvement over the use of a linear kernel without LTAG based features.","PeriodicalId":428824,"journal":{"name":"Proceedings of the 2003 conference on Empirical methods in natural language processing -","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 conference on Empirical methods in natural language processing -","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1119355.1119367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

We propose the use of Lexicalized Tree Adjoining Grammar (LTAG) as a source of features that are useful for reranking the output of a statistical parser. In this paper, we extend the notion of a tree kernel over arbitrary sub-trees of the parse to the derivation trees and derived trees provided by the LTAG formalism, and in addition, we extend the original definition of the tree kernel, making it more lexicalized and more compact. We use LTAG based features for the parse reranking task and obtain labeled recall and precision of 89.7%/90.0% on WSJ section 23 of Penn Treebank for sentences of length ≤ 100 words. Our results show that the use of LTAG based tree kernel gives rise to a 17% relative difference in f-score improvement over the use of a linear kernel without LTAG based features.
在解析重排序中使用基于LTAG的特征
我们建议使用词法化树相邻语法(LTAG)作为对统计解析器的输出重新排序有用的特征源。本文将树核的概念扩展到由LTAG形式提供的派生树和派生树,并扩展了树核的原始定义,使其更加词汇化和紧凑。我们将基于LTAG的特征用于解析重排序任务,在Penn Treebank的WSJ section 23上,对于长度≤100个单词的句子,我们获得了89.7%/90.0%的标记召回率和准确率。我们的结果表明,与使用不基于LTAG的特征的线性核相比,使用基于LTAG的树核在f-score改进方面产生了17%的相对差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信