Journal of the International Association for Shell and Spatial Structures最新文献

筛选
英文 中文
Assembly Sequence Optimization of Spatial Trusses Using Graph Embedding and Reinforcement Learning 基于图嵌入和强化学习的空间桁架装配序列优化
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-12-01 DOI: 10.20898/j.iass.2022.016
Kazuki Hayashi, M. Ohsaki, Masaya Kotera
{"title":"Assembly Sequence Optimization of Spatial Trusses Using Graph Embedding and Reinforcement Learning","authors":"Kazuki Hayashi, M. Ohsaki, Masaya Kotera","doi":"10.20898/j.iass.2022.016","DOIUrl":"https://doi.org/10.20898/j.iass.2022.016","url":null,"abstract":"We consider a truss as a graph consisting of nodes and edges, and combine graph embedding (GE) and reinforcement learning (RL) to develop an agent for generating a stable assembly path for a truss with arbitrary configuration. GE is a method of embedding the features of a graph into\u0000 a vector space. By using GE, the agent can obtain numerical information on neighboring members and nodes considering their connectivity. Since the stability of a structure is strongly affected by the relative positions of members and nodes, feature extraction by GE should be effective in considering\u0000 the stability of a truss. The proposed method not only can train agents using trusses with arbitrary connectivity but also can apply trained agents to trusses with arbitrary connectivity, ensuring the versatility of the trained agents' applicability. In the numerical examples, the trained\u0000 agents are verified to find rational assembly sequences for various trusses more than 1000 times faster than metaheuristic approaches. The trained agent is further implemented as a user-friendly component compatible with 3D modeling software.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46771341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Printnervi – Design and Construction of a Ribbed Floor System in the Digital Era Printnervi-数字时代罗纹地板系统的设计与施工
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-12-01 DOI: 10.20898/j.iass.2022.017
Jiaming Ma, Mohamed Reda Ramadan Gomaa, D. Bao, A. R. javan, Y. Xie
{"title":"Printnervi – Design and Construction of a Ribbed Floor System in the Digital Era","authors":"Jiaming Ma, Mohamed Reda Ramadan Gomaa, D. Bao, A. R. javan, Y. Xie","doi":"10.20898/j.iass.2022.017","DOIUrl":"https://doi.org/10.20898/j.iass.2022.017","url":null,"abstract":"Ribbed floor systems, which include ribbed slabs and columns, are used extensively to enhance the structural performance of buildings. With the emerging topology optimization and advanced manufacturing techniques, the material usage and construction process of the ribbed floor systems\u0000 can be improved significantly to achieve higher efficiency and sustainability. This paper presents a digital design and construction process for ribbed floor systems that combines a modified topology optimization method for ribbed slab design with a hybrid digital fabrication process for large-scale\u0000 concrete casting. This new approach is tested through digital design and physical realization of a large-scale ribbed floor unit as proof of concept. The topologically optimized result and the constructed unit are compared with a famous historical floor system designed by Pier Luigi Nervi.\u0000 The paper shows that the proposed design method, based on the bi-directional evolutionary structural optimization framework, can generate a slab design with a continuous rib layout and with higher structural stiffness. The paper also demonstrates that 3D printing of formworks for casting ribbed\u0000 slabs and complex-shaped columns is feasible and sustainable. The new process presented in this paper can be used to design and construct a wide range of structures while minimizing material usage and labor cost.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46767822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Freeform Auxetic Mechanisms Based on Corner-Connected Tiles 基于角接瓷砖的自由形式辅助机构
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-12-01 DOI: 10.20898/j.iass.2022.020
Kanata Warisaya, Jun Sato, Tomohiro Tachi
{"title":"Freeform Auxetic Mechanisms Based on Corner-Connected Tiles","authors":"Kanata Warisaya, Jun Sato, Tomohiro Tachi","doi":"10.20898/j.iass.2022.020","DOIUrl":"https://doi.org/10.20898/j.iass.2022.020","url":null,"abstract":"Auxetic mechanisms based on corner-connected polygonal tiles have been used to design deployable structures and are currently applied to programmable surfaces. However, existing surface structures are realized by compliant kirigami, and the realization with rigid-body mechanism, in\u0000 particular with thick panels, is still limited to configurations with global symmetries due to the mechanism's overconstraining nature. In this study, we generalize the auxetic mechanisms into freeform surfaces by imposing local symmetries on polyhedral surfaces. From the discussion of kinematics,\u0000 we show that polyhedral surfaces whose edges coincide with a Voronoi diagram of points on the surface can be converted to kinematics systems of corner-connected kinematic tiles. We propose hard constraints to ensure the Voronoi property required for the kinematics and soft constraints to attain\u0000 a large expansion ratio. Then, we provide an optimization-based scheme using the proposed constraints to achieve a mechanism from a given target surface. We also propose methods for accommodating the thickness of the tiles and show different variations of joints. As a result, we obtained deployable\u0000 surfaces of positive and negative Gaussian curvature that can deploy and contract with a one-DOF mechanism. If the structure is viewed as a cellular material, it has an auxetic property with Poisson's ratio of -1. It is also potentially scalable to architectural applications because our mechanism\u0000 is composed of rigid bodies and hinges.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47725651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Method for Designing Multi-Layer Sheet-Based Lightweight Funicular Structures 基于多层薄板的轻型索道结构设计方法
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-12-01 DOI: 10.20898/j.iass.2022.018
Yao Lu, Thamer Alsalem, M. Akbarzadeh
{"title":"A Method for Designing Multi-Layer Sheet-Based Lightweight Funicular Structures","authors":"Yao Lu, Thamer Alsalem, M. Akbarzadeh","doi":"10.20898/j.iass.2022.018","DOIUrl":"https://doi.org/10.20898/j.iass.2022.018","url":null,"abstract":"Multi-layer spatial structures usually take considerable external loads with a small material usage at all scales. Polyhedral graphic statics (PGS) provides a method to design multi-layer funicular polyhedral structures, and the structural forms are usually materialized as space frames.\u0000 Our previous research shows that the intrinsic planarity of the polyhedral geometries can be harnessed for efficient fabrication and construction processes using flat-sheet materials. Sheet-based structures are advantageous over conventional space frame systems because sheets can provide more\u0000 load paths and constrain the kinematic degrees of freedom of the nodes. Therefore, they are more capable of taking a wider variety of load cases compared to space frames. Moreover, sheet materials can be fabricated into complex shapes using CNC milling, laser cutting, water jet cutting, and\u0000 CNC bending techniques. However, not all sheets are necessary as long as the load paths are preserved and the system does not have kinematic degrees of freedom. To find an efficient set of faces that satisfies the requirements, this paper first incorporates and adapts the matrix analysis method\u0000 to calculate the kinematic degrees of freedom for sheet-based structures. Then, an iterative algorithm is devised to help find a reduced set of faces with zero kinematic degrees of freedom. To attest to the advantages of this method over bar-node construction, a comparative study is carried\u0000 out using finite element analysis. The results show that, with the same material usage, the sheet-based system has improved performance than the framework system under a range of loading scenarios.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43769825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Timbr Foldr – A Design Framework and Material System for Closed Cross-section Curved Folded Structures Timber Foldr——一种闭合截面弯曲折叠结构的设计框架和材料系统
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-12-01 DOI: 10.20898/j.iass.2022.014
Gabriel Rihaczek, M. Klammer, Okan Başnak, A. Körner, Riccardo La Magna, J. Knippers
{"title":"Timbr Foldr – A Design Framework and Material System for Closed Cross-section Curved Folded Structures","authors":"Gabriel Rihaczek, M. Klammer, Okan Başnak, A. Körner, Riccardo La Magna, J. Knippers","doi":"10.20898/j.iass.2022.014","DOIUrl":"https://doi.org/10.20898/j.iass.2022.014","url":null,"abstract":"This research investigated building components that can be produced and transported in a flat state and transformed to a spatial state without scaffolding on-site. Curved folding was employed to allow for a shape change between flat and spatial bending active structures. Bending generally\u0000 allows for expressive curvature with simple flat production as well as easy customization. Limitations presented by laborious forming and upscaling of individually bent plates were overcome by large-scale curved folding. The present research builds upon the context but adds a design framework\u0000 for volumetric curved folded components, a bistable behavior, and comprehensive detailing regarding upscaling and increased structural capacity. The mechanism was studied on a kinematic level, considering geometrical rules of curved folding and the design space. It was also studied on a kinetic\u0000 level under the consideration of material properties specific to plywood. As a proof of concept, a 1:1 scale demonstrator was built. Finite element modeling software was used to optimize the shape. The demonstrator was fabricated flat, folded up, and locked in its stable configuration by the\u0000 bistability and bases. It supported twelve people with a self-weight of approximately 300kg.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44957195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Demountable Reciprocal Frames with New Geometric Properties 具有新几何特性的可拆卸互易框架设计
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-09-01 DOI: 10.20898/j.iass.2022.013
G. Özen, G. Kiper, Koray Korkmaz
{"title":"Design of Demountable Reciprocal Frames with New Geometric Properties","authors":"G. Özen, G. Kiper, Koray Korkmaz","doi":"10.20898/j.iass.2022.013","DOIUrl":"https://doi.org/10.20898/j.iass.2022.013","url":null,"abstract":"This study aims to develop missing geometric knowledge for demountable reciprocal frames (RF). While designing a demountable RF, one should know the initial, in-process and final form of the RF. These processes require some specific geometric knowledge. There are some deficiencies about\u0000 geometric properties in the previous studies about demountable RFs. In this study, the positions and the orientations of the nexors are found by using the Denavit-Hartenberg parameters. This information gives where the joints are placed, how they are oriented and take position according to\u0000 one another. Besides, the influence of engagement length on the fan height and the base edge are analyzed. Thereby one will be able to find out how much space the RF covers with the known base edge. With the geometric knowledge obtained from this study, demountable RFs having different engagement\u0000 lengths can be produced with the same nexors.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48577756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Study On Algorithm-Generated Assembly Of Curved I And Y Shaped Branches For Temporary Shelters 临时掩体弯曲I、Y形分支的算法生成装配研究
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-06-01 DOI: 10.20898/j.iass.2022.006
Anton D. Kerezov, Mikio Koshihara
{"title":"A Study On Algorithm-Generated Assembly Of Curved I And Y Shaped Branches For Temporary Shelters","authors":"Anton D. Kerezov, Mikio Koshihara","doi":"10.20898/j.iass.2022.006","DOIUrl":"https://doi.org/10.20898/j.iass.2022.006","url":null,"abstract":"The aim of the research is to propose a workflow and an assembly tool for architecture based on curved wood in its whole unmodified form e. g., wasted crown wood from producing sawn timber, wood thinnings cut during forest management or just branches found in the woods. This paper describes the workflow from collecting the real wood to algorithmically generating a shelter structure. The authors propose a new spatial system suited for irregular elements along with a computer tool to generate all possible variations out of the input branch data. The merit of this approach is that it could fit any number of randomly sized branches together into combinatorically predefined structural shell surface, made of irregular triangles. The fitting is based on different parameters such as size, weight, curvature of the branches and can be filtered by the structure's height, interior volume, plan area, surface area of the shell, etc. The user can control these parameters to select the best solution to be build. This shelter generation method could be deployed to smart devices and used remotely in disaster mitigation and relief after earthquakes, floods or in times of wildfires and other emergency situations. This approach to architecture could prove useful because of its speed and ease of construction, low market price, as well as introducing a new way of shelter design generation.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42407855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BETA_S PAVILION BETA_S馆
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-06-01 DOI: 10.20898/j.iass.2022.010
Diane Davis-Sikora, R. Liu, Linda Ohrn-McDaniel
{"title":"BETA_S PAVILION","authors":"Diane Davis-Sikora, R. Liu, Linda Ohrn-McDaniel","doi":"10.20898/j.iass.2022.010","DOIUrl":"https://doi.org/10.20898/j.iass.2022.010","url":null,"abstract":"BeTA_S pavilion is a 2.13m (7 ft) tall free-standing installation that employs biotensegrity logics characterized by networks of interconnected components and tendons with a shape adaptive capacity. The passively stable assembly responds to human touch through vibrational motion. The pavilion introduces a novel hybrid structural system with a two-way surface derived from a catenary archway composed of 385 regular tetrahedron modules connected in series by bands of pre-stressed CNC knit textile strips. Each tetrahedron consists of bending-active GFRP rods linked by custom 3D printed polylactide connectors. The pavilion's double layered surface is hydrophobic, using yarn made from recycled plastic bottles.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47709729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design And Construction Of a Bending-Active Plywood Structure: The Flexmaps Pavilion 弯曲活动胶合板结构的设计与施工:Flexmaps展馆
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-06-01 DOI: 10.20898/j.iass.2022.007
F. Laccone, L. Malomo, M. Callieri, T. Alderighi, A. Muntoni, F. Ponchio, N. Pietroni, Paolo Cignoni
{"title":"Design And Construction Of a Bending-Active Plywood Structure: The Flexmaps Pavilion","authors":"F. Laccone, L. Malomo, M. Callieri, T. Alderighi, A. Muntoni, F. Ponchio, N. Pietroni, Paolo Cignoni","doi":"10.20898/j.iass.2022.007","DOIUrl":"https://doi.org/10.20898/j.iass.2022.007","url":null,"abstract":"Mesostructured patterns are a modern and efficient concept based on designing the geometry of structural material at the meso-scale to achieve desired mechanical performances. In the context of bending-active structures, such a concept can be used to control the flexibility of the panels forming a surface without changing the constituting material. These panels undergo a formation process of deformation by bending, and application of internal restraints. This paper describes a new constructional system, FlexMaps, that has initiated the adoption of bending-active mesostructures at the architectural scale. Here, these modules are in the form of four-arms spirals made of CNC-milled plywood and are designed to reach the desired target shape once assembled. All phases from the conceptual design to the fabrication are seamlessly linked within an automated workflow. To illustrate the potential of the system, the paper discusses the results of a demonstrator project entitled FlexMaps Pavilion (3.90x3.96x3.25 meters) that has been exhibited at the IASS Symposium in 2019 and more recently at the 2021 17th International Architecture Exhibition, La Biennale di Venezia. The structural response is investigated through a detailed structural analysis, and the long-term behavior is assessed through a photogrammetric survey.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46085092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The Design And Fabrication Of Mycocreate 2.0: A Spatial Structure Built With Load-Bearing Mycelium-Based Composite Components Mycocreate 2.0的设计与制造:一个由承载菌丝体的复合构件构建的空间结构
IF 0.8
Journal of the International Association for Shell and Spatial Structures Pub Date : 2022-06-01 DOI: 10.20898/j.iass.2022.012
A. Ghazvinian, Arman Khalilbeigi, Esmaeil Mottaghi, Benay Gürsoy
{"title":"The Design And Fabrication Of Mycocreate 2.0: A Spatial Structure Built With Load-Bearing Mycelium-Based Composite Components","authors":"A. Ghazvinian, Arman Khalilbeigi, Esmaeil Mottaghi, Benay Gürsoy","doi":"10.20898/j.iass.2022.012","DOIUrl":"https://doi.org/10.20898/j.iass.2022.012","url":null,"abstract":"MycoCreate 2.0 is a spatial structure with load-bearing components made of mycelium-based composites, built for the 2022 Biomaterials Building Exposition at the University of Virginia, and has been initially conceptualized for the 2021 IASS Innovative Lightweight Structures Competition. Mycelium-based composites are lightweight, renewable, and biodegradable biomaterials obtained from mycelium, the root systems of fungi. There is a growing interest in mycelium-based materials from the architecture community, mainly due to their sustainable features. With MycoCreate 2.0, we employed a computational form-finding strategy for funicular, component-based structures fabricated with mycelium-based materials and an affordable and sustainable fabrication strategy to minimize waste. In addition, we tapped into the structural aspects of mycelium-based composites, their lightness, and biodegradability while easing the breathing and compaction of the material within the formworks.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":" ","pages":""},"PeriodicalIF":0.8,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42781148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信