Annales Mathematiques du Quebec最新文献

筛选
英文 中文
Correction to: Jordan domains with a rectifiable arc in their boundary 更正:边界上有可直弧的Jordan域
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-10-27 DOI: 10.1007/s40316-020-00148-0
Vasiliki Liontou, Vassili Nestoridis
{"title":"Correction to: Jordan domains with a rectifiable arc in their boundary","authors":"Vasiliki Liontou, Vassili Nestoridis","doi":"10.1007/s40316-020-00148-0","DOIUrl":"10.1007/s40316-020-00148-0","url":null,"abstract":"","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"51 - 51"},"PeriodicalIF":0.5,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00148-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50518948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Growth of Selmer groups and fine Selmer groups in uniform pro-p extensions 一致pro-p扩展中Selmer群和精细Selmer群的生长
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-10-15 DOI: 10.1007/s40316-020-00147-1
Debanjana Kundu
{"title":"Growth of Selmer groups and fine Selmer groups in uniform pro-p extensions","authors":"Debanjana Kundu","doi":"10.1007/s40316-020-00147-1","DOIUrl":"10.1007/s40316-020-00147-1","url":null,"abstract":"<div><p>In this article, we study the growth of (fine) Selmer groups of elliptic curves in certain infinite Galois extensions where the Galois group <i>G</i> is a uniform, pro-<i>p</i>, <i>p</i>-adic Lie group. By comparing the growth of (fine) Selmer groups with that of class groups, we show that it is possible for the <span>(mu )</span>-invariant of the (fine) Selmer group to become arbitrarily large in a certain class of nilpotent, uniform, pro-<i>p</i> Lie extension. We also study the growth of fine Selmer groups in false Tate curve extensions.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 2","pages":"347 - 362"},"PeriodicalIF":0.5,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00147-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41863150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Newton polygons of Hecke operators 赫克算子的牛顿多边形
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-10-13 DOI: 10.1007/s40316-020-00149-z
Liubomir Chiriac, Andrei Jorza
{"title":"Newton polygons of Hecke operators","authors":"Liubomir Chiriac,&nbsp;Andrei Jorza","doi":"10.1007/s40316-020-00149-z","DOIUrl":"10.1007/s40316-020-00149-z","url":null,"abstract":"<div><p>In this computational paper we verify a truncated version of the Buzzard–Calegari conjecture on the Newton polygon of the Hecke operator <span>(T_2)</span> for all large enough weights. We first develop a formula for computing <i>p</i>-adic valuations of exponential sums, which we then implement to compute 2-adic valuations of traces of Hecke operators acting on spaces of cusp forms. Finally, we verify that if Newton polygon of the Buzzard–Calegari polynomial has a vertex at <span>(nle 15)</span>, then it agrees with the Newton polygon of <span>(T_2)</span> up to <i>n</i>.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 2","pages":"271 - 290"},"PeriodicalIF":0.5,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00149-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45704882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Correction to: Steiner symmetrization ((n-1)) times is sufficient to transform an ellipsoid to a ball in ({mathbb {R}}^{n}) 修正为:Steiner对称化(n-1))次足以在({mathbb{R}}^{n})中将椭球变换为球
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-09-21 DOI: 10.1007/s40316-020-00146-2
Yude Liu, Qiang Sun, Ge Xiong
{"title":"Correction to: Steiner symmetrization ((n-1)) times is sufficient to transform an ellipsoid to a ball in ({mathbb {R}}^{n})","authors":"Yude Liu,&nbsp;Qiang Sun,&nbsp;Ge Xiong","doi":"10.1007/s40316-020-00146-2","DOIUrl":"10.1007/s40316-020-00146-2","url":null,"abstract":"","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"229 - 230"},"PeriodicalIF":0.5,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00146-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50503713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Steiner symmetrization $$(n-1)$$ ( n - 1 ) times is suff 修正:斯坦纳对称$$(n-1)$$ (n - 1)次是足够的
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-09-21 DOI: 10.1007/S40316-020-00146-2
Yude Liu, Qiang Sun, Ge Xiong
{"title":"Correction to: Steiner symmetrization \u0000 \u0000 \u0000 \u0000 $$(n-1)$$\u0000 \u0000 \u0000 (\u0000 n\u0000 -\u0000 1\u0000 )\u0000 \u0000 \u0000 times is suff","authors":"Yude Liu, Qiang Sun, Ge Xiong","doi":"10.1007/S40316-020-00146-2","DOIUrl":"https://doi.org/10.1007/S40316-020-00146-2","url":null,"abstract":"","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"1 1","pages":"229-230"},"PeriodicalIF":0.5,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/S40316-020-00146-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52717132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Grothendieck’s inequality to linear symplectic geometry Grothendieck不等式在线性辛几何中的应用
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-08-25 DOI: 10.1007/s40316-020-00143-5
Efim Gluskin, Shira Tanny
{"title":"Applications of Grothendieck’s inequality to linear symplectic geometry","authors":"Efim Gluskin,&nbsp;Shira Tanny","doi":"10.1007/s40316-020-00143-5","DOIUrl":"10.1007/s40316-020-00143-5","url":null,"abstract":"<div><p>Recently in symplectic geometry there arose an interest in bounding various functionals on spaces of matrices. It appears that Grothendieck’s theorem about factorization is a useful tool for proving such bounds. In this note we present two such applications.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"239 - 247"},"PeriodicalIF":0.5,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00143-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50511885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Limiting eigenfunctions of Sturm–Liouville operators subject to a spectral flow 谱流作用下Sturm-Liouville算子的极限特征函数
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-08-20 DOI: 10.1007/s40316-020-00142-6
Thomas Beck, Isabel Bors, Grace Conte, Graham Cox, Jeremy L. Marzuola
{"title":"Limiting eigenfunctions of Sturm–Liouville operators subject to a spectral flow","authors":"Thomas Beck,&nbsp;Isabel Bors,&nbsp;Grace Conte,&nbsp;Graham Cox,&nbsp;Jeremy L. Marzuola","doi":"10.1007/s40316-020-00142-6","DOIUrl":"10.1007/s40316-020-00142-6","url":null,"abstract":"<div><p>We examine the spectrum of a family of Sturm–Liouville operators with regularly spaced delta function potentials parametrized by increasing strength. The limiting behavior of the eigenvalues under this spectral flow was described by Berkolaiko et al. (Lett Math Phys 109(7):1611–1623, 2019), where it was used to study the nodal deficiency of Laplacian eigenfunctions. Here we consider the eigenfunctions of these operators. In particular, we give explicit formulas for the limiting eigenfunctions, and also characterize the eigenfunctions and eigenvalues for all values for the spectral flow parameter (not just in the limit). We also develop spectrally accurate numerical tools for comparison and visualization.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 2","pages":"249 - 269"},"PeriodicalIF":0.5,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00142-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41785769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the entropy norm on $${text {Ham}}(S^2)$$ Ham ( S 2 ) 关于$$(S^2)$$Ham(S2)的熵范数
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-08-20 DOI: 10.1007/s40316-020-00144-4
Michael Brandenbursky, E. Shelukhin
{"title":"On the entropy norm on \u0000 \u0000 \u0000 \u0000 $${text {Ham}}(S^2)$$\u0000 \u0000 \u0000 Ham\u0000 (\u0000 \u0000 S\u0000 2\u0000 \u0000 )\u0000 ","authors":"Michael Brandenbursky, E. Shelukhin","doi":"10.1007/s40316-020-00144-4","DOIUrl":"https://doi.org/10.1007/s40316-020-00144-4","url":null,"abstract":"","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"231-237"},"PeriodicalIF":0.5,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00144-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43510141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the entropy norm on ({text {Ham}}(S^2)) 关于({text{Ham}}(S^2))的熵范数
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-08-20 DOI: 10.1007/s40316-020-00144-4
Michael Brandenbursky, Egor Shelukhin
{"title":"On the entropy norm on ({text {Ham}}(S^2))","authors":"Michael Brandenbursky,&nbsp;Egor Shelukhin","doi":"10.1007/s40316-020-00144-4","DOIUrl":"10.1007/s40316-020-00144-4","url":null,"abstract":"<div><p>In this note we prove that for each positive integer <i>m</i> there exists a bi-Lipschitz embedding <span>({mathbf{Z}}^mrightarrow {text {Ham}}(S^2))</span>, where <span>({text {Ham}}(S^2))</span> is equipped with the entropy metric. In particular, the same result holds when the entropy metric is replaced with the autonomous metric.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 1","pages":"231 - 237"},"PeriodicalIF":0.5,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00144-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50498931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elliptic double shuffle, Grothendieck–Teichmüller and mould theory 椭圆双洗牌、Grothendieck–Teichmüller与模具理论
IF 0.5
Annales Mathematiques du Quebec Pub Date : 2020-07-29 DOI: 10.1007/s40316-020-00141-7
Leila Schneps
{"title":"Elliptic double shuffle, Grothendieck–Teichmüller and mould theory","authors":"Leila Schneps","doi":"10.1007/s40316-020-00141-7","DOIUrl":"10.1007/s40316-020-00141-7","url":null,"abstract":"<div><p>In this article we define an <i>elliptic double shuffle Lie algebra</i> <span>(scriptstyle {{mathfrak {ds}}_{ell}})</span> that generalizes the well-known <i>double shuffle Lie algebra</i> <span>(scriptstyle {{mathfrak {ds}}})</span> to the elliptic situation. The double shuffle, or dimorphic, relations satisfied by elements of the Lie algebra <span>(scriptstyle {{mathfrak {ds}}})</span> express two families of algebraic relations between multiple zeta values that conjecturally generate all relations. In analogy with this, elements of the elliptic double shuffle Lie algebra <span>(scriptstyle {{mathfrak {ds}}_{ell}})</span> are Lie polynomials having a dimorphic property called <span>(scriptstyle {Delta })</span>-bialternality that conjecturally describes the (dual of the) set of algebraic relations between <i>elliptic multiple zeta values</i>, which arise as coefficients of a certain elliptic generating series (constructed explicitly in Lochak et al.\u0000[15]) in On elliptic multiple zeta values 2016, in preparation) and closely related to the elliptic associator defined by Enriquez\u0000[10]. We show that one of Ecalle’s major results in mould theory can be reinterpreted as yielding the existence of an injective Lie algebra morphism <span>(scriptstyle {{mathfrak {ds}}rightarrow {mathfrak {ds}}_{ell}})</span>. Our main result is the compatibility of this map with the tangential-base-point section <span>(scriptstyle {mathrm{Lie},pi _1(MTM)rightarrow mathrm{Lie},pi _1(MEM)})</span> constructed by Hain and Matsumoto\u0000[14] and with the section <span>(scriptstyle {{mathfrak {grt}}rightarrow {mathfrak {grt}}_{ell}})</span> mapping the Grothendieck–Teichmüller Lie algebra <span>(scriptstyle {{mathfrak {grt}}})</span> into the elliptic Grothendieck–Teichmüller Lie algebra <span>(scriptstyle {{mathfrak {grt}}_{ell}})</span> constructed by Enriquez. This compatibility is expressed by the commutativity of the following diagram (excluding the dotted arrow, which is conjectural). </p><div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"44 2","pages":"261 - 289"},"PeriodicalIF":0.5,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00141-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46193125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信