切割数场的塔

IF 0.5 Q3 MATHEMATICS
Farshid Hajir, Christian Maire, Ravi Ramakrishna
{"title":"切割数场的塔","authors":"Farshid Hajir,&nbsp;Christian Maire,&nbsp;Ravi Ramakrishna","doi":"10.1007/s40316-021-00156-8","DOIUrl":null,"url":null,"abstract":"<div><p>Given a prime <i>p</i>, a number field <span>\\({K}\\)</span> and a finite set of places <i>S</i> of <span>\\({K}\\)</span>, let <span>\\({K}_S\\)</span> be the maximal pro-<i>p</i> extension of <span>\\({K}\\)</span> unramified outside <i>S</i>. Using the Golod–Shafarevich criterion one can often show that <span>\\({K}_S/{K}\\)</span> is infinite. In both the tame and wild cases we construct infinite subextensions with bounded ramification using the refined Golod–Shafarevich criterion. In the tame setting we are able to produce infinite asymptotically good extensions in which infinitely many primes split completely, and in which <i>every</i> prime has Frobenius of finite order, a phenomenon that had been expected by Ihara. We also achieve new records on Martinet constants (root discriminant bounds) in the totally real and totally complex cases.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 2","pages":"321 - 345"},"PeriodicalIF":0.5000,"publicationDate":"2021-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-021-00156-8","citationCount":"10","resultStr":"{\"title\":\"Cutting towers of number fields\",\"authors\":\"Farshid Hajir,&nbsp;Christian Maire,&nbsp;Ravi Ramakrishna\",\"doi\":\"10.1007/s40316-021-00156-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a prime <i>p</i>, a number field <span>\\\\({K}\\\\)</span> and a finite set of places <i>S</i> of <span>\\\\({K}\\\\)</span>, let <span>\\\\({K}_S\\\\)</span> be the maximal pro-<i>p</i> extension of <span>\\\\({K}\\\\)</span> unramified outside <i>S</i>. Using the Golod–Shafarevich criterion one can often show that <span>\\\\({K}_S/{K}\\\\)</span> is infinite. In both the tame and wild cases we construct infinite subextensions with bounded ramification using the refined Golod–Shafarevich criterion. In the tame setting we are able to produce infinite asymptotically good extensions in which infinitely many primes split completely, and in which <i>every</i> prime has Frobenius of finite order, a phenomenon that had been expected by Ihara. We also achieve new records on Martinet constants (root discriminant bounds) in the totally real and totally complex cases.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"45 2\",\"pages\":\"321 - 345\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40316-021-00156-8\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-021-00156-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00156-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

给定素数p,一个数域\({K}\)和\({K}\)的有限位置集S,设\({K}_S\)是S外未分枝的\({K}\)的最大pro-p扩张。使用Golod–Shafarevich准则,我们经常可以证明\({K}_S/{K} \)是无限的。在驯服和狂野的情况下,我们使用精化的Golod–Shafarevich准则构造了具有有界分支的无限子扩张。在温和的环境中,我们能够产生无限个渐近好的扩展,其中无限多个素数完全分裂,并且每个素数都有有限阶的Frobenius,这是Ihara所期望的现象。在完全真实和完全复杂的情况下,我们还获得了关于Martinet常数(根判别界)的新记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutting towers of number fields

Given a prime p, a number field \({K}\) and a finite set of places S of \({K}\), let \({K}_S\) be the maximal pro-p extension of \({K}\) unramified outside S. Using the Golod–Shafarevich criterion one can often show that \({K}_S/{K}\) is infinite. In both the tame and wild cases we construct infinite subextensions with bounded ramification using the refined Golod–Shafarevich criterion. In the tame setting we are able to produce infinite asymptotically good extensions in which infinitely many primes split completely, and in which every prime has Frobenius of finite order, a phenomenon that had been expected by Ihara. We also achieve new records on Martinet constants (root discriminant bounds) in the totally real and totally complex cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信