{"title":"Computational Identification of Putative miRNAs from Felis Catus","authors":"G. Sathyamurthy, N. Swamy","doi":"10.4137/BECB.S5233","DOIUrl":"https://doi.org/10.4137/BECB.S5233","url":null,"abstract":"microRNAs represent a class of noncoding small RNAs of approximately 20–23 nt length, which are evolutionarily conserved and play a vital role in various biological processes by either degrading or repressing mRNA translation. The Felis catus (cat) genome sequence has been published, and just revealed the number of miRNAs in the genome–-without mention of any further details on these miRNAs. This paper discusses an in silico comparative approach using all known sequences of vertebrate pre-miRNA as query sequence, and report 405 putative miRNAs from cat genome. We determine the identity values of pre-miRNAs and mature miRNAs besides statistical sequence characteristics. Interestingly, among 405 miRNAs–-90, 53 and 50 showed 100% identity to cattle, human and dog, respectively. Further, we have validated 6 miRNAs, whose identity are <85% with the query sequence and validated them using MiPred algorithm. We also identify 25 miRNA clusters in cat based on their homologs in other vertebrates. Most importantly, based on identities among pre-miRNA, mature miRNA, miRNA families and clusters, we observe that miRNAs from cat are more identical to cattle, than humans. Our results, therefore may add a new dimension to the studies related to the evolution of cat.","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"2 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S5233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70685951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Druglike Small Molecules for Possible Inhibition of Antiapoptotic BCL-2, BCL-W, and BFL-1 Proteins","authors":"D. S. Dalafave","doi":"10.4137/BECB.S5575","DOIUrl":"https://doi.org/10.4137/BECB.S5575","url":null,"abstract":"New druglike small molecules with possible anticancer applications were computationally designed. The molecules formed stable complexes with antiapoptotic BCL-2, BCL-W, and BFL-1 proteins. These findings are novel because, to the best of the author's knowledge, molecules that bind all three of these proteins are not known. A drug based on them should be more economical and better tolerated by patients than a combination of drugs, each targeting a single protein. The calculated drug-related properties of the molecules were similar to those found in most commercial drugs. The molecules were designed and evaluated following a simple, yet effective procedure. The need for substantial computational resources often precludes researchers in many countries and small institutions from participating in the field. The procedure presented here offsets the problem by reducing the cost of involvement. The procedure can be used efficiently in the early phases of drug discovery to evaluate promising lead compounds in time- and cost-effective ways.","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"2 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S5575","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70686011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. Bai, Dandan Huang, P. Lin, Jinglong Wu, Xuedong Chen, D. Fei
{"title":"An Event-Related Study for Dynamic Analysis of Corticomuscular Connectivity","authors":"O. Bai, Dandan Huang, P. Lin, Jinglong Wu, Xuedong Chen, D. Fei","doi":"10.4137/BECB.S5546","DOIUrl":"https://doi.org/10.4137/BECB.S5546","url":null,"abstract":"Corticomuscular coupling estimated by EEG-EMG coherence may reveal functional cortical driving of peripheral muscular activity. EEG-EMG coherence in the beta band (15–30 Hz) has been extensively studied under isometric muscle contraction tasks. We attempted to study the time-course of corticomuscular connectivity under a dynamic target tracking task. A new device was developed for the real-time measurement of dynamic force created by pinching thumb and index fingers. Four healthy subjects who participated in this study were asked to track visual targets with the feedback forces. Spectral parameters using FFT and complex wavelet were explored for reliable estimation of event-related coherence and EEG-EMG correlogram for representing corticomuscular connectivity. Clearly distinguishable FFT-based coherence and cross-correlogram during the visual target tracking were observed with appropriate hyper-parameters for spectral estimation. The system design and the exploration of signal processing methods in this study supports further exploration of corticomuscular connectivity associated with human motor control.","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"2 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S5546","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"70685997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On Robust State Estimation of Gene Networks","authors":"Chia-Hua Chuang, Chun‐Liang Lin","doi":"10.1177/117959721000200001","DOIUrl":"https://doi.org/10.1177/117959721000200001","url":null,"abstract":"Gene networks in biological systems are not only nonlinear but also stochastic due to noise corruption. How to accurately estimate the internal states of the noisy gene networks is an attractive issue to researchers. However, the internal states of biological systems are mostly inaccessible by direct measurement. This paper intends to develop a robust extended Kalman filter for state and parameter estimation of a class of gene network systems with uncertain process noises. Quantitative analysis of the estimation performance is conducted and some representative examples are provided for demonstration.","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"1 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/117959721000200001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65350394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomedical Engineering and Computational Biology","authors":"K. Najarian","doi":"10.1177/117959720900100001","DOIUrl":"https://doi.org/10.1177/117959720900100001","url":null,"abstract":"This is an open access article distributed under the terms of the Creative Commons Attribution License (http://www.creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction provided the original work is properly cited. Open Access Full open access to this and thousands of other papers at http://www.la-press.com. Biomedical Engineering and Computational Biology","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"1 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/117959720900100001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65350379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}