{"title":"Design strategies of biodegradable scaffolds for tissue regeneration.","authors":"Khalil N Bitar, Elie Zakhem","doi":"10.4137/BECB.S10961","DOIUrl":"https://doi.org/10.4137/BECB.S10961","url":null,"abstract":"<p><p>There are numerous available biodegradable materials that can be used as scaffolds in regenerative medicine. Currently, there is a huge emphasis on the designing phase of the scaffolds. Materials can be designed to have different properties in order to match the specific application. Modifying scaffolds enhances their bioactivity and improves the regeneration capacity. Modifications of the scaffolds can be later characterized using several tissue engineering tools. In addition to the material, cell source is an important component of the regeneration process. Modified materials must be able to support survival and growth of different cell types. Together, cells and modified biomaterials contribute to the remodeling of the engineered tissue, which affects its performance. This review focuses on the recent advancements in the designs of the scaffolds including the physical and chemical modifications. The last part of this review also discusses designing processes that involve viability of cells. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"6 ","pages":"13-20"},"PeriodicalIF":2.8,"publicationDate":"2014-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S10961","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32724651","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quality and safety of minimally invasive surgery: past, present, and future.","authors":"Bernadette McCrory, Chad A LaGrange, Ms Hallbeck","doi":"10.4137/BECB.S10967","DOIUrl":"https://doi.org/10.4137/BECB.S10967","url":null,"abstract":"<p><p>Adverse events because of medical errors are a leading cause of death in the United States (US) exceeding the mortality rates of motor vehicle accidents, breast cancer, and AIDS. Improvements can and should be made to reduce the rates of preventable surgical errors because they account for nearly half of all adverse events within hospitals. Although minimally invasive surgery (MIS) has proven patient benefits such as reduced postoperative pain and hospital stay, its operative environment imposes substantial physical and cognitive strain on the surgeon increasing the risk of error. To mitigate errors and protect patients, a multidisciplinary approach is needed to improve MIS. Clinical human factors, and biomedical engineering principles and methodologies can be used to develop and assess laparoscopic surgery instrumentation, practices, and procedures. First, the foundational understanding and the imperative to transform health care into a high-quality and safe system is discussed. Next, a generalized perspective is presented on the impact of the design and redesign of surgical technologies and processes on human performance. Finally, the future of this field and the research needed to further improve the quality and safety of MIS is discussed. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"6 ","pages":"1-11"},"PeriodicalIF":2.8,"publicationDate":"2014-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S10967","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Stress Induced Failure of the Blood-gas Barrier and the Epithelial-epithelial Cells Connections of the Lung of the Domestic Fowl, Gallus gallus Variant Domesticus after Vascular Perfusion.","authors":"John N Maina, Sikiru A Jimoh","doi":"10.4137/BECB.S12988","DOIUrl":"https://doi.org/10.4137/BECB.S12988","url":null,"abstract":"<p><p>Complete blood-gas barrier breaks (BGBBs) and epithelial-epithelial cells connections breaks (E-ECCBs) were enumerated in the lungs of free range chickens, Gallus gallus variant domesticus after vascular perfusion at different pressures. The E-ECCBs surpassed the BGBBs by a factor of ~2. This showed that the former parts of the gas exchange tissue were structurally weaker or more vulnerable to failure than the latter. The differences in the numbers of BGBBs and E-ECCBs in the different regions of the lung supplied with blood by the 4 main branches of the pulmonary artery (PA) corresponded with the diameters of the blood vessels, the angles at which they bifurcated from the PA, and the positions along the PA where they branched off. Most of the BGBBs and the E-ECCBs occurred in the regions supplied by the accessory- and the caudomedial branches: the former is the narrowest branch and the first blood vessel to separate from the PA while the latter is the most direct extension of the PA and is the widest. The E-ECCBs appeared to separate and fail from tensing of the blood capillary walls, as the perfusion- and intramural pressures increased. Compared to the mammalian lungs on which data are available, i.e., those of the rabbit, the dog, and the horse, the blood-gas barrier of the lung of free range chickens appears to be substantially stronger for its thinness. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"5 ","pages":"77-88"},"PeriodicalIF":2.8,"publicationDate":"2013-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S12988","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cardiac electrophysiological dynamics from the cellular level to the organ level.","authors":"Daisuke Sato, Colleen E Clancy","doi":"10.4137/BECB.S10960","DOIUrl":"https://doi.org/10.4137/BECB.S10960","url":null,"abstract":"<p><p>Cardiac alternans describes contraction of the ventricles in a strong-weak-strong-weak sequence at a constant pacing frequency. Clinically, alternans manifests as alternation of the T-wave on the ECG and predisposes individuals to arrhythmia and sudden cardiac death. In this review, we focus on the fundamental dynamical mechanisms of alternans and show how alternans at the cellular level underlies alternans in the tissue and on the ECG. A clear picture of dynamical mechanisms underlying alternans is important to allow development of effective anti-arrhythmic strategies. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"5 ","pages":"69-75"},"PeriodicalIF":2.8,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S10960","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manas M Kawale, Gregory P Reece, Melissa A Crosby, Elisabeth K Beahm, Michelle C Fingeret, Mia K Markey, Fatima A Merchant
{"title":"Automated Identification of Fiducial Points on 3D Torso Images.","authors":"Manas M Kawale, Gregory P Reece, Melissa A Crosby, Elisabeth K Beahm, Michelle C Fingeret, Mia K Markey, Fatima A Merchant","doi":"10.4137/BECB.S11800","DOIUrl":"https://doi.org/10.4137/BECB.S11800","url":null,"abstract":"<p><p>Breast reconstruction is an important part of the breast cancer treatment process for many women. Recently, 2D and 3D images have been used by plastic surgeons for evaluating surgical outcomes. Distances between different fiducial points are frequently used as quantitative measures for characterizing breast morphology. Fiducial points can be directly marked on subjects for direct anthropometry, or can be manually marked on images. This paper introduces novel algorithms to automate the identification of fiducial points in 3D images. Automating the process will make measurements of breast morphology more reliable, reducing the inter- and intra-observer bias. Algorithms to identify three fiducial points, the nipples, sternal notch, and umbilicus, are described. The algorithms used for localization of these fiducial points are formulated using a combination of surface curvature and 2D color information. Comparison of the 3D co-ordinates of automatically detected fiducial points and those identified manually, and geodesic distances between the fiducial points are used to validate algorithm performance. The algorithms reliably identified the location of all three of the fiducial points. We dedicate this article to our late colleague and friend, Dr. Elisabeth K. Beahm. Elisabeth was both a talented plastic surgeon and physician-scientist; we deeply miss her insight and her fellowship. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"5 ","pages":"57-68"},"PeriodicalIF":2.8,"publicationDate":"2013-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S11800","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neurotrauma and Repair Research: Traumatic Brain Injury (TBI) and its Treatments.","authors":"Hanna Algattas, Jason H Huang","doi":"10.4137/BECB.S10968","DOIUrl":"https://doi.org/10.4137/BECB.S10968","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) affects a growing portion of the population and continues to take national spotlight with advances in imaging technology and understanding of long-term effects. However, there is large variance in TBI treatment protocols due to injury variability and lack of both mechanistic understanding and strong treatment recommendations. Recent practice suggests three disparate treatment approaches, all which aim at promoting neuroprotection after TBI, show promise: immediate hypothermia, hyperbaric oxygen, and progesterone supplementation. The research is controversial at times, yet there are abundant opportunities to develop the technology behind hypothermia and hyperbaric oxygen treatments which would surely aid in aligning the current data. Additionally, while progesterone has already been packaged in nanoparticle form it may benefit from continued formulation and administration research. The treatments and the avenues for improvement are reviewed in the present paper. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"5 ","pages":"51-6"},"PeriodicalIF":2.8,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S10968","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brijesh Singh Yadav, Venkateswarlu Ronda, Dinesh P Vashista, Bhaskar Sharma
{"title":"Sequencing and computational approaches to identification and characterization of microbial organisms.","authors":"Brijesh Singh Yadav, Venkateswarlu Ronda, Dinesh P Vashista, Bhaskar Sharma","doi":"10.4137/BECB.S10886","DOIUrl":"https://doi.org/10.4137/BECB.S10886","url":null,"abstract":"<p><p>The recent advances in sequencing technologies and computational approaches are propelling scientists ever closer towards complete understanding of human-microbial interactions. The powerful sequencing platforms are rapidly producing huge amounts of nucleotide sequence data which are compiled into huge databases. This sequence data can be retrieved, assembled, and analyzed for identification of microbial pathogens and diagnosis of diseases. In this article, we present a commentary on how the metagenomics incorporated with microarray and new sequencing techniques are helping microbial detection and characterization. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"5 ","pages":"43-9"},"PeriodicalIF":2.8,"publicationDate":"2013-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S10886","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gyutae Kim, Mohammed M Ferdjallah, Frederic D McKenzie
{"title":"An Empirical Muscle Intracellular Action Potential Model with Multiple Erlang Probability Density Functions based on a Modified Newton Method.","authors":"Gyutae Kim, Mohammed M Ferdjallah, Frederic D McKenzie","doi":"10.4137/BECB.S11646","DOIUrl":"https://doi.org/10.4137/BECB.S11646","url":null,"abstract":"<p><p>The convolution of the transmembrane current of an excitable cell and a weighting function generates a single fiber action potential (SFAP) model by using the volume conductor theory. Here, we propose an empirical muscle IAP model with multiple Erlang probability density functions (PDFs) based on a modified Newton method. In addition, we generate SFAPs based on our IAP model and referent sources, and use the peak-to-peak ratios (PPRs) of SFAPs for model verification. Through this verification, we find that the relation between an IAP profile and the PPR of its SFAP is consistent with some previous studies, and our IAP model shows close profiles to the referent sources. Moreover, we simulate and discuss some possible ionic activities by using the Erlang PDFs in our IAP model, which might present the underlying activities of ions or their channels during an IAP. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"5 ","pages":"33-42"},"PeriodicalIF":2.8,"publicationDate":"2013-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S11646","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Current status of endovascular devices to treat abdominal aortic aneurysms.","authors":"Kamell Eckroth-Bernard, Robert Garvin, Evan Ryer","doi":"10.4137/BECB.S10970","DOIUrl":"https://doi.org/10.4137/BECB.S10970","url":null,"abstract":"<p><p>The introduction of endovascular abdominal aortic aneurysm (AAA) repair has revolutionized the therapeutic approach to patients with AAA. Due to an on-going and prolific collaboration between vascular interventionalists and biomedical engineers, the devices used to perform endovascular AAA repair have also changed dramatically. The purpose of this publication is to provide an overview of the currently available and upcoming options for endovascular AAA repair. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"5 ","pages":"25-32"},"PeriodicalIF":2.8,"publicationDate":"2013-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S10970","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some perspectives on network modeling in therapeutic target prediction.","authors":"Reka Albert, Bhaskar DasGupta, Nasim Mobasheri","doi":"10.4137/BECB.S10793","DOIUrl":"10.4137/BECB.S10793","url":null,"abstract":"<p><p>Drug target identification is of significant commercial interest to pharmaceutical companies, and there is a vast amount of research done related to the topic of therapeutic target identification. Interdisciplinary research in this area involves both the biological network community and the graph algorithms community. Key steps of a typical therapeutic target identification problem include synthesizing or inferring the complex network of interactions relevant to the disease, connecting this network to the disease-specific behavior, and predicting which components are key mediators of the behavior. All of these steps involve graph theoretical or graph algorithmic aspects. In this perspective, we provide modelling and algorithmic perspectives for therapeutic target identification and highlight a number of algorithmic advances, which have gotten relatively little attention so far, with the hope of strengthening the ties between these two research communities. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":"5 ","pages":"17-24"},"PeriodicalIF":2.8,"publicationDate":"2013-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4147778/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"32725420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}