Study of Stress Induced Failure of the Blood-gas Barrier and the Epithelial-epithelial Cells Connections of the Lung of the Domestic Fowl, Gallus gallus Variant Domesticus after Vascular Perfusion.

IF 2.3 Q3 ENGINEERING, BIOMEDICAL
Biomedical Engineering and Computational Biology Pub Date : 2013-11-20 eCollection Date: 2013-01-01 DOI:10.4137/BECB.S12988
John N Maina, Sikiru A Jimoh
{"title":"Study of Stress Induced Failure of the Blood-gas Barrier and the Epithelial-epithelial Cells Connections of the Lung of the Domestic Fowl, Gallus gallus Variant Domesticus after Vascular Perfusion.","authors":"John N Maina,&nbsp;Sikiru A Jimoh","doi":"10.4137/BECB.S12988","DOIUrl":null,"url":null,"abstract":"<p><p>Complete blood-gas barrier breaks (BGBBs) and epithelial-epithelial cells connections breaks (E-ECCBs) were enumerated in the lungs of free range chickens, Gallus gallus variant domesticus after vascular perfusion at different pressures. The E-ECCBs surpassed the BGBBs by a factor of ~2. This showed that the former parts of the gas exchange tissue were structurally weaker or more vulnerable to failure than the latter. The differences in the numbers of BGBBs and E-ECCBs in the different regions of the lung supplied with blood by the 4 main branches of the pulmonary artery (PA) corresponded with the diameters of the blood vessels, the angles at which they bifurcated from the PA, and the positions along the PA where they branched off. Most of the BGBBs and the E-ECCBs occurred in the regions supplied by the accessory- and the caudomedial branches: the former is the narrowest branch and the first blood vessel to separate from the PA while the latter is the most direct extension of the PA and is the widest. The E-ECCBs appeared to separate and fail from tensing of the blood capillary walls, as the perfusion- and intramural pressures increased. Compared to the mammalian lungs on which data are available, i.e., those of the rabbit, the dog, and the horse, the blood-gas barrier of the lung of free range chickens appears to be substantially stronger for its thinness. </p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2013-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4137/BECB.S12988","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/BECB.S12988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 7

Abstract

Complete blood-gas barrier breaks (BGBBs) and epithelial-epithelial cells connections breaks (E-ECCBs) were enumerated in the lungs of free range chickens, Gallus gallus variant domesticus after vascular perfusion at different pressures. The E-ECCBs surpassed the BGBBs by a factor of ~2. This showed that the former parts of the gas exchange tissue were structurally weaker or more vulnerable to failure than the latter. The differences in the numbers of BGBBs and E-ECCBs in the different regions of the lung supplied with blood by the 4 main branches of the pulmonary artery (PA) corresponded with the diameters of the blood vessels, the angles at which they bifurcated from the PA, and the positions along the PA where they branched off. Most of the BGBBs and the E-ECCBs occurred in the regions supplied by the accessory- and the caudomedial branches: the former is the narrowest branch and the first blood vessel to separate from the PA while the latter is the most direct extension of the PA and is the widest. The E-ECCBs appeared to separate and fail from tensing of the blood capillary walls, as the perfusion- and intramural pressures increased. Compared to the mammalian lungs on which data are available, i.e., those of the rabbit, the dog, and the horse, the blood-gas barrier of the lung of free range chickens appears to be substantially stronger for its thinness.

Abstract Image

Abstract Image

Abstract Image

血管灌注后应激诱导的家鸡肺血气屏障破坏及上皮-上皮细胞连接的研究。
观察了不同压力下放养鸡、变型家鸡肺血管灌注后的完全血气屏障破裂(BGBBs)和上皮-上皮细胞连接破裂(E-ECCBs)。e - eccb比BGBBs高出约2倍。这表明气体交换组织的前一部分在结构上比后者更弱或更容易失败。肺动脉4支供血区域BGBBs和e - eccb数量的差异与血管直径、血管从肺动脉分叉的角度以及血管沿肺动脉分叉的位置有关。BGBBs和e - eccb大多发生在副支和尾支供应的区域:前者是最窄的分支,是最早与PA分离的血管,后者是PA最直接的延伸,也是最宽的。随着灌注压力和壁内压力的增加,E-ECCBs似乎从毛细血管壁的张力中分离并失效。与有数据可查的哺乳动物的肺相比,如兔子、狗和马的肺,放养鸡肺的血气屏障似乎因其薄而明显更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
8 weeks
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信