{"title":"Geoprocessing of archival aerial photos and their scientific applications: A review","authors":"Adam Kostrzewa","doi":"10.2478/rgg-2024-0010","DOIUrl":"https://doi.org/10.2478/rgg-2024-0010","url":null,"abstract":"\u0000 Poland as well as other countries keep extensive collections of 20th and 21st-century aerial photos, which are underexploited compared to such other archival materials as satellite imagery. Meanwhile, they offer significant research potential in various areas, including urban development, land use changes, and long-term environmental monitoring. Archival photographs are detailed, often obtained every five to ten years, and feature high resolution, from 20 cm to 1 m. Their overlap can facilitate creating precise digital models that illustrate topography and land cover, which are essential variables in many scientific contexts. However, rapidly transforming these photographs into geographically accurate measurements of the Earth’s surface poses challenges. This article explores the obstacles in automating the processing of historical photographs and presents the main scientific research directions associated with these images. Recent advancements in enhancing work˚ows, including the development of modern digital photogrammetry tools, algorithms, and machine learning techniques are also discussed. These developments are crucial for unlocking the full potential of aerial photographs, making them easier accessible and valuable for a broader range of scientific fields. These underutilized photographs are increasingly recognized as vital in various research domains due to technological advancements. Integrating new methods with these historical images offers unprecedented opportunities for scientific discovery and historical understanding, bridging the past with the future through innovative research techniques.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141829036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of the accuracy of BeiDou, QZSS and QZSS/BeiDou satellites configuration for short, medium and long baselines in the Asia-Pacific regions","authors":"A. Pırtı","doi":"10.2478/rgg-2024-0011","DOIUrl":"https://doi.org/10.2478/rgg-2024-0011","url":null,"abstract":"\u0000 The field of satellite navigation has seen significant advancements due to the fast development of multi-constellation Global Navigation Satellite Systems (GNSS). Around 150 satellites will be in service when all six systems – GPS, GLONASS, Galileo, BeiDou, QZSS, and NAVIC – are launched by 2030, offering both enormous potential and advantages for research and engineering applications. This study used an experiment on the accuracy, particularly for short, medium, long baselines (Wide Lane ambiguity solution) of the BeiDou, QZSS and QZSS/BeiDou combinations. It showed that with the integration of BeiDou/QZSS static measurements in the study region millimetre-centimetre accuracy for short, medium, and long baselines can be attained. Based on the results of this study, it can be concluded that the 1st (QZSS/BeiDou), 2nd (BeiDou), and 3rd (QZSS) strategies feature different horizontal accuracies for all categories. The obtained results with different satellite configurations for the Fixed-Wide-Lane integer ambiguity solution are compared with each other. Accuracy at the short baseline (BeiDou, QZSS, and BeiDou/QZSS satellites) was obtained in the range of 0.5–0.7 cm. For the medium baseline, it was computed around 1.8–82 cm. For the long baseline, the accuracy was 5.6–13.3 cm.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141830041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Site-specific efficient management of soil resources using GIS and BIM technologies","authors":"A. Borkowski, A. Bielska, J. Kwiatkowska-Malina","doi":"10.2478/rgg-2024-0009","DOIUrl":"https://doi.org/10.2478/rgg-2024-0009","url":null,"abstract":"Abstract The spatial data sets of soil resources are essential for the interpretation of the site-specific ecosystems, not only concerning process investigations, but also for sustainable soil management The objective of the study was to attempt identification of the primary parameters influencing the rational management of soils available without the necessity of carrying out time-consuming and costly field and laboratory research. The research was carried out in the Pawłów commune (north-eastern part of the Świętokrzyskie Voivodeship, Poland). The research included the application of different methods and interpretation of source materials, including (i) digital soil-agricultural map, (ii) annex to the soil-agricultural map at a scale of 1:5000, (iii) soil quality contours, (iv) digital terrain model, and (v) orthophotomaps. Obtaining data concerning soil type and/or agricultural usefulness complexes would require conducting a generalisation process. Publicly available ortophotomaps and cartographic materials in the form of topographic maps and a numerical terrain model were analysed to determine the extent of soils to be protected. The rational management of space and soil resources can be visualised and documented using BIM technology; however, relying on GIS data is not the most straightforward task due to the lack of integration on the BIM-GIS line. This paper presents the current state of the art and attempts to address selected problems in this area.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141400829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Accuracy of the application of mobile technologies for measurements made in headings of the Kłodawa Salt Mine","authors":"Ewa Joanna Świerczyńska, Damian Kurdek, Iwona Jankowska","doi":"10.2478/rgg-2024-0007","DOIUrl":"https://doi.org/10.2478/rgg-2024-0007","url":null,"abstract":"\u0000 The “Kłodawa” salt mine, due to geological conditions and continuous salt extraction, is subject to a range of measurements documenting the speed of changes in the geometry of the chambers. Cyclic surveys are conducted under challenging conditions several hundred metres underground. Consequently, measurement methods used for determining the parameters of the ongoing clamping should be of high precision but also be resistant to dense dust (in fields of active mining) and strong gusts (near ventilation shafts).\u0000 The research presented here concerns the analysis of the possibilities of solutions offered by modern technologies in mine conditions. Test measurements were conducted at observation stations using linear bases stabilized with metal pins. The base points were located in the aisles, ceiling, and bottom of the chamber in Field 1 of “Kłodawa” salt mine at the depth of 600m. Point clouds mapping the object were acquired using a Leica RTC360 3D laser scanner and two mobile devices: Motorola G100 smartphone and iPad Pro with LiDAR technology using the Pix4Dcatch application. The accuracy of the point cloud from the Leica RTC360 3D laser scanner was determined by comparing it with classic measurements taken with a Leica Disto laser rangefinder. The repeatability and accuracy of the point cloud from a smartphone were examined using statistical analysis based on Pearson’s correlation coefficient and cross-correlation. An attempt was also made to approximate the correlation between the obtained errors and two parameters: the number of images and the size of the object.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140210381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Walyeldeen Godah, Malgorzata Szelachowska, Andenet A. Gedamu
{"title":"Accuracy assessment of high and ultra high-resolution combined GGMs, and recent satellite-only GGMs – Case studies of Poland and Ethiopia","authors":"Walyeldeen Godah, Malgorzata Szelachowska, Andenet A. Gedamu","doi":"10.2478/rgg-2024-0005","DOIUrl":"https://doi.org/10.2478/rgg-2024-0005","url":null,"abstract":"\u0000 The launch of dedicated satellite gravity missions (CHAMP, GRACE, GOCE, and GRACE–FO), as well as the availability of gravity data from satellite altimetry and terrestrial/airborne gravity measurements have led to a growing number of Global Geopotential Models (GGMs) developed. Thus, the evaluation of GGMs is necessary to ensure their accuracy in recovering the Earth’s gravity field on local, regional, and global scales. The main objective of this research is to assess the accuracy of recent GGMs over Poland in Central Europe and Ethiopia in East Africa.\u0000 Combined GGMs of high (degree and order (d/o) 2190) and ultra high-resolution (d/o 5540) as well as five satellite-only GGMs were evaluated using gravity data from absolute gravity measurements and airborne gravity surveys over Poland and Ethiopia, respectively. Based on this evaluation, the estimated accuracy of the high-resolution combined GGM is at the level of 2 mGal. The estimated accuracy for the ultra-high-resolution combined GGM is ~2.5 times lower. The satellite-only GGMs investigated recover the gravity signal at an accuracy level of 10 mGal and 26 mGal, for the areas of Poland and Ethiopia, respectively. When compensating for the omitted gravity signal using a high-resolution combined GGM and the topography model, an accuracy of 2 mGal can be achieved.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short-term prediction of UT1-UTC and LOD via Dynamic Mode Decomposition and combination of least-squares and vector autoregressive model","authors":"M. Michalczak, M. Ligas","doi":"10.2478/rgg-2024-0006","DOIUrl":"https://doi.org/10.2478/rgg-2024-0006","url":null,"abstract":"\u0000 This study presents a short-term forecast of UT1-UTC and LOD using two methods, i.e. Dynamic Mode Decomposition (DMD) and combination of Least-Squares and Vector Autoregression (LS+VAR). The prediction experiments were performed separately for yearly time spans, 2018-2022. The prediction procedure started on January 1 and ended on December 31, with 7-day shifts between subsequent 30-day forecasts. Atmospheric Angular Momentum data (AAM) were used as an auxiliary time series to potentially improve the prediction accuracy of UT1-UTC and LOD in LS+VAR procedure. An experiment was also conducted with and without elimination of effect of zonal tides from UT1-UTC and LOD time series. Two approaches to using the best steering parameters for the methods were applied:. First, an adaptive approach, which observes the rule that before every single forecast, a preliminary one must be performed on the pre-selected sets of parameters, and the one with the smallest prediction error is then used for the final prediction; and second, an averaged approach, whereby several forecasts are made with different sets of parameters (the same parameters as in adaptive approach) and the final values are calculated as the averages of these predictions. Depending on the method and data combination mean absolute prediction errors (MAPE) for UT1-UTC vary from 0.63 ms to 1.43ms for the 10th day and from 3.07 ms to 8.05ms for the 30th day of the forecast. Corresponding values for LOD vary from 0.110 ms to 0.245 ms for the 10th day and from 0.148 ms to 0.325 ms for the 30th day.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grzegorz Borkowski, Adam Młynarczyk, Artur Plichta, Remigiusz Tritt
{"title":"Selected methods for determining inconclusively identifiable shorelines of watercourses and lakes","authors":"Grzegorz Borkowski, Adam Młynarczyk, Artur Plichta, Remigiusz Tritt","doi":"10.2478/rgg-2024-0004","DOIUrl":"https://doi.org/10.2478/rgg-2024-0004","url":null,"abstract":"\u0000 The determination of a lake or natural watercourse shoreline is the subject of various administrative proceedings relating to, among others, the engineering of riverbeds, construction of hydro-technical facilities, remediation work, land division, or delimitation of parcels. The provisions of law, while laying out the rules for determining shorelines, do not explicitly specify the measurement method to follow. All the more so, as many shores of lakes and watercourses are among terrain details that are difficult to measure due to their varied accessibility, which depends on the terrain, vegetation, and water conditions. The purpose of this paper is to compare selected methods for determining the shoreline of watercourses and lakes in terms of their applicability under different environmental conditions under current legislation. This study comprises an assessment of the suitability of the applied methods of shoreline measurement under varying field conditions and their applicability in surveying work on shoreline determination. Surveys were conducted on 3 reservoirs and one watercourse using geodetic, photogrammetric, and remote sensing techniques, and the suitability of the various methods was evaluated with respect to the field conditions of the measurements.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140263898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The issue of parties’ participation in technical activities related to the boundaries of parcels","authors":"Marcin Karabin, Robert Łuczyński","doi":"10.2478/rgg-2024-0003","DOIUrl":"https://doi.org/10.2478/rgg-2024-0003","url":null,"abstract":"\u0000 Participation of the parties in works related to the boundaries a˛ects the determination of boundaries according to the owners’ consistent indications, or allows for an appropriate reaction when determining the boundary points of the previously ~xed boundaries, i.e. referring the case to court in the event of a dispute regarding the location of boundary marks. It is important that the owners of neighboring parcels know their boundaries before any investment activities. The lack of this knowledge combined with the lack of legal security regarding boundaries in the event of con˚icts between owners of neighboring parcels may result in, in addition to sending the case to court, serious consequences, e.g. demolition of a fence built in the wrong place, demolition of a house built too close to the boundary. The legal solutions discussed here concern the Polish cadastre, but the issue itself can be said to go beyond the local scale as it potentially concerns the problem of properly determining the scope of ownership rights (boundaries) to parcels in other countries. The article discusses and analyzes the documentation prepared by licensed surveyors in the context of the validity of applicable boundary procedures in Poland regarding the participation of the parties in these activities. Analyzes have proven that focusing these procedures on correctly notifying the parties about given boundary activities is not the right approach. Such solutions only bring results in terms of correctly notifying the parties about the activities and do not lead to their actual participation in them.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140433974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparative analysis of the performance of various GNSS positioning concepts dedicated to precision agriculture","authors":"Wiktoria Zofia Kowalczyk, Tomasz Hadas","doi":"10.2478/rgg-2024-0002","DOIUrl":"https://doi.org/10.2478/rgg-2024-0002","url":null,"abstract":"\u0000 Automated guidance systems for precision agriculture rely on Global Navigation Satellite Systems (GNSS) and correction services for high accuracy and precision in field operations. This study evaluates the performance of selected GNSS positioning services for precision agriculture in a field experiment. We use three correction services: SF1, SF3, and RTK, which apply varying positioning concepts, i.e., Wide Area Differential GNSS, Precise Point Positioning, and Real-Time Kinematics, respectively. The tractor is autonomously steered along multiple predefined paths located in open-sky areas as well as near the heavy tree cover. The reference route of the vehicle is determined by classical surveying. Tractor trajectories, a SF1 and SF3 corrections, are shifted from predefined straight paths, unlike in the case for RTK. Offsets of up to several decimeters are service- and area-specific, indicating an issue with the stability of the reference frame. Additionally, the varying performance of the correction services implies that environmental conditions limit the precision and accuracy of GNSS positioning in precision agriculture. The pass-to-pass analysis reveals that SF1 improves the declared accuracy, while SF3 is less reliable in obstructed areas. RTK remains a stable source for determining position. Under favorable conditions, the pass-to-pass accuracy at 95% confidence level is better than 11.5 cm, 8.5 cm, and 4.5 cm for SF1, SF3, and RTK, respectively. In the worst-case scenario, the corresponding accuracies are: 25.5 cm, 65.5 cm, and 22.5 cm.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139867592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A comparative analysis of the performance of various GNSS positioning concepts dedicated to precision agriculture","authors":"Wiktoria Zofia Kowalczyk, Tomasz Hadas","doi":"10.2478/rgg-2024-0002","DOIUrl":"https://doi.org/10.2478/rgg-2024-0002","url":null,"abstract":"\u0000 Automated guidance systems for precision agriculture rely on Global Navigation Satellite Systems (GNSS) and correction services for high accuracy and precision in field operations. This study evaluates the performance of selected GNSS positioning services for precision agriculture in a field experiment. We use three correction services: SF1, SF3, and RTK, which apply varying positioning concepts, i.e., Wide Area Differential GNSS, Precise Point Positioning, and Real-Time Kinematics, respectively. The tractor is autonomously steered along multiple predefined paths located in open-sky areas as well as near the heavy tree cover. The reference route of the vehicle is determined by classical surveying. Tractor trajectories, a SF1 and SF3 corrections, are shifted from predefined straight paths, unlike in the case for RTK. Offsets of up to several decimeters are service- and area-specific, indicating an issue with the stability of the reference frame. Additionally, the varying performance of the correction services implies that environmental conditions limit the precision and accuracy of GNSS positioning in precision agriculture. The pass-to-pass analysis reveals that SF1 improves the declared accuracy, while SF3 is less reliable in obstructed areas. RTK remains a stable source for determining position. Under favorable conditions, the pass-to-pass accuracy at 95% confidence level is better than 11.5 cm, 8.5 cm, and 4.5 cm for SF1, SF3, and RTK, respectively. In the worst-case scenario, the corresponding accuracies are: 25.5 cm, 65.5 cm, and 22.5 cm.","PeriodicalId":42010,"journal":{"name":"Reports on Geodesy and Geoinformatics","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139807735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}