{"title":"Are We Typical?","authors":"J. Hartle, M. Srednicki","doi":"10.1142/9789811216404_0017","DOIUrl":"https://doi.org/10.1142/9789811216404_0017","url":null,"abstract":"","PeriodicalId":416124,"journal":{"name":"The Quantum Universe","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116200620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Impact of Cosmology on Quantum Mechanics","authors":"J. Hartle","doi":"10.1142/9789811216404_0023","DOIUrl":"https://doi.org/10.1142/9789811216404_0023","url":null,"abstract":"When quantum mechanics was developed in the '20s of the last century another revolution in physics was just starting. It began with the discovery that the universe is expanding. For a long time quantum mechanics and cosmology developed independently of one another. Yet the very discovery of the expansion would eventually draw the two subjects together because it implied the big bang where quantum mechanics wasimportant for cosmology and for understanding and predicting our observations of the universe today. Textbook (Copenhagen) formulations of quantum mechanics are inadequate for cosmology for at least four reasons: 1) They predict the outcomes of measurements made by observers. But in the very early universe no measurements were being made and no observers were around to make them. 2) Observers were outside of the system being measured. But we are interested in a theory of the whole universe where everything, including observers, are inside. 3) Copenhagen quantum mechanics could not retrodict the past. But retrodicting the past to understand how the universe began is the main task of cosmology. 4) Copenhagen quantum mechanics required a fixed classical spacetime geometry not least to give meaning to the time in the Schr\"odinger equation. But in the very early universe spacetime is fluctuating quantum mechanically (quantum gravity) and without definite value. A formulation of quantum mechanics general enough for cosmology was started by Everett and developed by many. That effort has given us a more general framework that is adequate for cosmology --- decoherent (or consistent) histories quantum theory in the context of semiclassical quantum gravity. Copenhagen quantum theory is an approximation to this more general quantum framework that is appropriate for measurement situations. We discuss whether further generalization may still be required.","PeriodicalId":416124,"journal":{"name":"The Quantum Universe","volume":"126 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128218115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum Multiverses","authors":"J. Hartle","doi":"10.1142/9789811216404_0020","DOIUrl":"https://doi.org/10.1142/9789811216404_0020","url":null,"abstract":"A quantum theory of the universe consists of a theory of its quantum dynamics (H) and a theory of its quantum state (Ψ). The theory (H,Ψ) predicts quantum multiverses in the form of decoherent sets of alternative histories describing the evolution of the universe’s spacetime geometry and matter content. A small part of one of these histories is observed by us. These consequences follow: (a) The universe generally exhibits different quantum multiverses at different levels and kinds of coarse graining. (b) Quantum multiverses are not a choice or an assumption but are consequences of (H,Ψ) or not. (c) Quantum multiverses are generic for simple (H,Ψ). (d) Anthropic selection is automatic because observers are physical systems within the universe not somehow outside it. (e) Quantum multiverses can provide different mechanisms for the variation constants in effective theories (like the cosmological constant) enabling anthropic selection. (f) Different levels of coarse grained multiverses provide different routes to calculation as a consequence of decoherence. We support these conclusions by analyzing the quantum multiverses of a variety of quantum cosmological models aimed at the prediction of observable properties of our universe. In particular we show how the example of a multiverse consisting of a vast classical spacetime containing many pocket universes having different values of the fundamental constants arises automatically as part of a quantum multiverse describing an eternally inflating false vacuum that decays by the quantum nucleation of true vacuum bubbles. In a FAQ we argue that the quantum multiverses of the universe are scientific, real, testable, falsifiable, and similar to those in other areas of science even if they are not directly observable on arbitrarily large scales. ∗ A pedagogical essay. †Electronic address: hartle@physics.ucsb.edu 1 ar X iv :1 80 1. 08 63 1v 1 [ gr -q c] 2 5 Ja n 20 18","PeriodicalId":416124,"journal":{"name":"The Quantum Universe","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125035496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why Our Universe Is Comprehensible","authors":"J. Hartle","doi":"10.1142/9789811216404_0014","DOIUrl":"https://doi.org/10.1142/9789811216404_0014","url":null,"abstract":"Einstein wrote memorably that `The eternally incomprehensible thing about the world is its comprehensibility.' This paper argues that the universe must be comprehensible at some level for information gathering and utilizing subsystems such as human observers to evolve and function.","PeriodicalId":416124,"journal":{"name":"The Quantum Universe","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125079892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Living in a Superposition","authors":"J. Hartle","doi":"10.1142/9789811216404_0012","DOIUrl":"https://doi.org/10.1142/9789811216404_0012","url":null,"abstract":"This essay considers a model quantum universe consisting of a very large box containing a screen with two slits and an observer (us) that can pass though the slits. We apply the modern quantum mechanics of closed systems to calculate the probabilities for alternative histories of how we move through the universe and what we see. After passing through the screen with the slits, the quantum state of the universe is a superposition of classically distinguishable histories. We are then living in a superposition. Some frequently asked questions about such situations are answered using this model. The model's relationship to more realistic quantum cosmologies is briefly discussed.","PeriodicalId":416124,"journal":{"name":"The Quantum Universe","volume":"318 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116290666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Observer Strikes Back","authors":"J. Hartle, T. Hertog","doi":"10.1017/9781316535783.010","DOIUrl":"https://doi.org/10.1017/9781316535783.010","url":null,"abstract":"In the modern quantum mechanics of cosmology observers are physical systems within the universe. They have no preferred role in the formulation of the theory nor in its predictions of third person probabilities of what occurs. However, observers return to importance for the prediction of first person probabilities for what we observe of the universe: What is most probable to be observed is not necessarily what is most probable to occur. This essay reviews the basic framework for the computation of first person probabilities in quantum cosmology starting with an analysis of very simple models. It is shown that anthropic selection is automatic in this framework, because there is no probability for us to observe what is where we cannot exist. First person probabilities generally favor larger universes resulting from inflation where there are more places for us to be. In very large universes it is probable that our observational situation is duplicated elsewhere. The calculation of first person probabilities then requires a specification of whether our particular situation is assumed to be typical of all the others. It is the combination of the model of the observational situation, including this typicality assumption, and the third person theory which is tested by observation. We conclude with a discussion of the first person predictions of cosmological observables such as the cosmological constant and features of the primordial density fluctuations, in the no-boundary quantum state of the universe and a dynamical theory in which these are allowed to vary.","PeriodicalId":416124,"journal":{"name":"The Quantum Universe","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123878878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}