{"title":"A Case Study of the Aquatic Habitat Changes due to Weir Gate Operation","authors":"Byungwoong Choi, Nam-Chool Lee","doi":"10.17820/ERI.2020.7.4.300","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.300","url":null,"abstract":"This study was conducted to evaluate the impact of weir gate operation in aquatic fish habitats through a physical habitat simulation of Geum River, Korea. The target species was Zacco platypus, which is a dominant species in the study area. The River2D model was used to compute the flow, and the habitat suitability index model was used to estimate the quality and quantity of the habitat using a habitat suitability curve. An unopened case and a partially opened case were investigated to assess the impact of weir gate operation on the aquatic fish habitat. The simulation results showed that the aquatic habitats of the target species in the partially opened case improved significantly, compared to the case without a gate opening. Furthermore, the weighted usable area increased by a factor of approximately 13, owing to weir gate operation in the study area.","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"196 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134441564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Bed Changes of the Nakdong River with Opening the Weir Gate","authors":"Seong-Jun Kim, Chang-Sung Kim","doi":"10.17820/ERI.2020.7.4.353","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.353","url":null,"abstract":"In this study, the characteristics of bed elevation changes of the Nakdong River when weir gates are opened were analyzed using the Hydrologic Engineering Center-River Analysis System (HEC-RAS). The study area was 292.37 km downstream of the Gudam Bridge to the Nakdong estuary of the Nakdong River. The HEC-RAS program, which is a 1D numerical analysis model, was used to simulate bed elevation changes. Simulations were conducted under two scenarios from 2017 to 2019. Scenarios 1 and 2 were devised under the conditions of a fully opened gate and during gate installation, respectively. Results confirmed that, under the conditions of Scenario 1, deposition occurred in most sections from the Hapcheon-Changnyeong weir to the Changnyeong-Haman weir (a distance of approximately 40 km). In addition, it was predicted that the flow that included sediments in the main stream of the Nakdong River was not interrupted by the weir structure and regularly produced changes in the river bed.","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115225457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forecasting Technique of Downstream Water Level using the Observed Water Level of Upper Stream","authors":"Sang Mun Kim, Byungwoong Choi, Nam-Chool Lee","doi":"10.17820/ERI.2020.7.4.345","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.345","url":null,"abstract":"Securing the lead time for evacuation is crucial to minimize flood damage. In this study, downstream water levels for heavy rainfall were predicted using measured water level observation data. Multiple regression analysis and artificial neural networks were applied to the Seom River experimental watershed to predict the water level. Water level observation data for the Seom River experimental watershed from 2002 to 2010 were used to perform the multiple regression analysis and to train the artificial neural networks. The water level was predicted using the trained model. The simulation results for the coefficients of determination of the artificial neural network level prediction ranged from 0.991 to 0.999, while those of the multiple regression analysis ranged from 0.945 to 0.990. The water level prediction model developed using an artificial neural network was better than the multiple-regression analysis model. This technique for forecasting downstream water levels is expected to contribute toward flooding warning systems that secure the lead time for streams.","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132098901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ROC Analysis of Topographic Factors in Flood Vulnerable Area considering Surface Runoff Characteristics","authors":"J. Y. Lee, Ji-Sung Kim","doi":"10.17820/ERI.2020.7.4.327","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.327","url":null,"abstract":"The method of selecting an existing flood hazard area via a numerical model requires considerable time and effort. In this regard, this study proposes a method for selecting flood vulnerable areas through topographic analysis based on a surface runoff mechanism to reduce the time and effort required. Flood vulnerable areas based on runoff mechanisms refer to those areas that are advantageous in terms of the flow accumulation characteristics of rainfall-runoff water at the surface, and they generally include lowlands, mild slopes, and rivers. For the analysis, a digital topographic map of the target area (Seoul) was employed. In addition, in the topographic analysis, eight topographic factors were considered, namely, the elevation, slope, profile and plan curvature, topographic wetness index (TWI), stream power index, and the distances from rivers and manholes. Moreover, receiver operating characteristic analysis was conducted between the topographic factors and actual inundation trace data. The results revealed that four topographic factors, namely, elevation, slope, TWI, and distance from manholes, explained the flooded area well. Thus, when a flood vulnerable area is selected, the prioritization method for various factors as proposed in this study can simplify the topographical analytical factors that contribute to flooding.","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123811353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kwang-jin Cho, Jeoncheol Lim, Chang-Woo Lee, J. Yoon, Mijeong Kim, Yeounsu Chu
{"title":"Characteristics of Naturalized Plants in the Wetland Protection Areas of Inland Wetlands","authors":"Kwang-jin Cho, Jeoncheol Lim, Chang-Woo Lee, J. Yoon, Mijeong Kim, Yeounsu Chu","doi":"10.17820/ERI.2020.7.4.374","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.374","url":null,"abstract":"This study was conducted to provide basic data for monitoring the trend of ecosystem change and establishing management plans for wetland protection areas by understanding the status of naturalized plants. In 21 wetland protection areas, 129 taxa, including 10 invasive alien species, were recorded. The naturalized plants appeared mostly as 71 taxa in the Chimsil wetland and were not observed in the Moojechineup and Sumeunmulbaengdui wetlands. Among the naturalized plants, 42 taxa (32.6%) originated from North America. Annual and biennial plants accounted for 68.2% (88 taxa). The frequencies of occurrence of naturalized plants growing in dry secondary grasses such as Erigeron annuus and Trifolium repens were high, and clonal plants that propagated by making stolons and struck roots accounted for 19.4% (25 taxa). The naturalized and urbanization indices showed positive correlations with location factors such as wetland, agricultural land, and used area. However, a negative correlation was found between altitude and forest. Therefore, a management plan that synthetically considers the occurrence frequency and growth characteristics of naturalized plants as well as the locational characteristics of wetland protection areas is required.","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115303980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Riparian Vegetation Expansion Due to the Change of Rainfall Pattern and Water Level in the River","authors":"Won Kim, Sinae Kim","doi":"10.17820/ERI.2020.7.4.238","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.238","url":null,"abstract":"This study aims to examine the causes of the rapid expansion of riparian vegetation in river channels in recent years. Accordingly, the changes in the monthly rainfall were analyzed at 19 locations over the period of 1984 to 2018. Moreover, the changes in the water levels of the target river sections of Seom River, Cheongmi River, and Naeseong River were analyzed. The results showed that rainfall increased by 30% in April and decreased by up to 49% in the May-September period since 2012. Between 2012 and 2018, when rainfall decreased, the inundation time of the floodplains of the target rivers decreased considerably. The floodplains of Seom River and Cheongmi River were not inundated since 2012 and 2013, respectively. In the case of Naeseong River, the inundation time of the low-water channel drastically decreased since 2013, and there was no inundation in 2015. Consequently, riparian vegetation settled rapidly on the floodplain without any disturbance and continued to expand. The settling and expansion of riparian vegetation reduce the flood capacity of the river channel and can also lead to the loss of the water ecosystem due to terrestrialization.","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"14 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124724640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Case Study of Assessment of the Ecological Connectivity of Cross Sectional Structures in the Flowing Stream","authors":"H. Choi","doi":"10.17820/ERI.2020.7.4.320","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.320","url":null,"abstract":"","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132226269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jung-Ho Shin, Hyun-Sung Kim, Eunsuk Kim, Sung-ju Ahn
{"title":"Biopolymer Amended Soil Reduces the Damages of Zn Excess in Camlina sativa L.","authors":"Jung-Ho Shin, Hyun-Sung Kim, Eunsuk Kim, Sung-ju Ahn","doi":"10.17820/ERI.2020.7.4.262","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.262","url":null,"abstract":"","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"1006 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133759342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giyoung Ock, Mikyoung Choi, Jeong-Cheol Kim, Hyung-Geun Park, Ji Hyun Han
{"title":"Evaluation of Habitat Diversity Changes by Weir Operation of the Sejongbo Weir in Geum River using High-resolution Aerial Photographs","authors":"Giyoung Ock, Mikyoung Choi, Jeong-Cheol Kim, Hyung-Geun Park, Ji Hyun Han","doi":"10.17820/ERI.2020.7.4.366","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.366","url":null,"abstract":"","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127271221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of Sustainable Food Waste Management for Reducing Greenhouse Gases Emissions in Korea","authors":"Saeromi Lee, J. Park, C. Ahn","doi":"10.17820/ERI.2020.7.4.248","DOIUrl":"https://doi.org/10.17820/ERI.2020.7.4.248","url":null,"abstract":"In this study, we analyze the current state of domestic food waste (FW) recycling and propose a management plan for greenhouse gas (GHG) emissions. First, the composting potential of the GW demonstrates considerable promise. In particular, the GW (phytoplankton, periphyton, macrophyte, etc.) as a third-generation biomass shows strong performance as a functional additive that mitigates the disadvantages associated with composting FW and improves the quality of the final composted product. Alternatively, the final product (e.g., soil ameliorant) can be used to produce bio-filters that are effective pollutant buffers, with high applicability for green infrastructure. The proposed ecological approaches create new opportunities for FW as a resource for the reduction of GHG emissions, and are expected to contribute to the establishment of effective net-zero carbon systems in the future.","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117136553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}