{"title":"Forecasting Technique of Downstream Water Level using the Observed Water Level of Upper Stream","authors":"Sang Mun Kim, Byungwoong Choi, Nam-Chool Lee","doi":"10.17820/ERI.2020.7.4.345","DOIUrl":null,"url":null,"abstract":"Securing the lead time for evacuation is crucial to minimize flood damage. In this study, downstream water levels for heavy rainfall were predicted using measured water level observation data. Multiple regression analysis and artificial neural networks were applied to the Seom River experimental watershed to predict the water level. Water level observation data for the Seom River experimental watershed from 2002 to 2010 were used to perform the multiple regression analysis and to train the artificial neural networks. The water level was predicted using the trained model. The simulation results for the coefficients of determination of the artificial neural network level prediction ranged from 0.991 to 0.999, while those of the multiple regression analysis ranged from 0.945 to 0.990. The water level prediction model developed using an artificial neural network was better than the multiple-regression analysis model. This technique for forecasting downstream water levels is expected to contribute toward flooding warning systems that secure the lead time for streams.","PeriodicalId":415343,"journal":{"name":"Ecology and resilient infrastructure","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and resilient infrastructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17820/ERI.2020.7.4.345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Securing the lead time for evacuation is crucial to minimize flood damage. In this study, downstream water levels for heavy rainfall were predicted using measured water level observation data. Multiple regression analysis and artificial neural networks were applied to the Seom River experimental watershed to predict the water level. Water level observation data for the Seom River experimental watershed from 2002 to 2010 were used to perform the multiple regression analysis and to train the artificial neural networks. The water level was predicted using the trained model. The simulation results for the coefficients of determination of the artificial neural network level prediction ranged from 0.991 to 0.999, while those of the multiple regression analysis ranged from 0.945 to 0.990. The water level prediction model developed using an artificial neural network was better than the multiple-regression analysis model. This technique for forecasting downstream water levels is expected to contribute toward flooding warning systems that secure the lead time for streams.