{"title":"Random Caching Strategy in HetNets with Random Discontinuous Transmission","authors":"Li Hu, F. Zheng, Jingjing Luo, Xu Zhu","doi":"10.1109/WCNC45663.2020.9120642","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120642","url":null,"abstract":"In this paper, we jointly explore random caching and cooperative transmission in heterogenous networks (HetNets) with random discontinuous transmission (DTX). We consider a realistic scenario where joint transmission is not always available and assume two cases depending on whether joint transmission is available. With the help of stochastic geometry, a tractable expression for the average successful transmission probability (STP) is obtained. We then formulate the STP optimization problem to find the optimal caching policy. In addition, we analyze the STP under random DTX. Compared with several existing caching policies in the previous works, we show that the optimal caching policy indeed achieves a significant performance gain.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"521 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124483943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Harshan, Amogh Vithalkar, Naman Jhunjhunwala, Manthan Kabra, Prafull Manav, Yih-Chun Hu
{"title":"Bloom Filter Based Low-Latency Provenance Embedding Schemes in Wireless Networks","authors":"J. Harshan, Amogh Vithalkar, Naman Jhunjhunwala, Manthan Kabra, Prafull Manav, Yih-Chun Hu","doi":"10.1109/WCNC45663.2020.9120640","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120640","url":null,"abstract":"A number of applications in next-generation multi-hop networks impose low-latency requirements on data transmission thereby necessitating the underlying relays to introduce negligible delay when forwarding the packets. While traditional relaying techniques such as amplify-and-forward may help the packets to satisfy latency-constraints, such strategies do not facilitate the destination in determining security threats, if any, during the packet’s journey. Inspired by the problem of relaying packets that have low-latency constraints, we revisit the design of provenance embedding algorithms to reduce delays on the packets and yet assist the destination in determining the provenance with no knowledge on the network topology. We propose a new class of provenance embedding techniques, referred to as double-edge (DE) embedding techniques, wherein a subset of the relay nodes in the path strategically skip the provenance embedding process to reduce the delays on the packets. Under the framework of DE embedding techniques, we propose a deterministic skipping strategy among the nodes such that the destination can recover the provenance of every packet. Using fixed-size bloom filters as tools to implement the double-edge embedding ideas, we propose upper bounds on the error-rates of the DE embedding technique as a function of the number of nodes in the network, number of hops, bloom filter size, and the number of hash functions used by each node. Subsequently, we demonstrate the efficacy of the DE embedding technique on a testbed of Digi XBee devices, and show that it outperforms competitive baselines both in terms of latency as well as error-rates.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129529122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vinh Hoang Son Le, C. A. Nour, C. Douillard, E. Boutillon
{"title":"A Low-Complexity Dual Trellis Decoding Algorithm for High-Rate Convolutional Codes","authors":"Vinh Hoang Son Le, C. A. Nour, C. Douillard, E. Boutillon","doi":"10.1109/WCNC45663.2020.9120466","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120466","url":null,"abstract":"Decoding using the dual trellis is considered as a potential technique to increase the throughput of soft-input soft-output decoders for high coding rate convolutional codes. However, the dual Log-MAP algorithm suffers from a high decoding complexity. More specifically, the source of complexity comes from the soft-output unit, which has to handle a high number of extrinsic values in parallel. In this paper, we present a new low-complexity sub-optimal decoding algorithm using the dual trellis, namely the dual Max-Log-MAP algorithm, suited for high coding rate convolutional codes. A complexity analysis and simulation results are provided to compare the dual Max-Log-MAP and the dual Log-MAP algorithms. Despite a minor loss of about 0.2 dB in performance, the dual Max-Log-MAP algorithm significantly reduces the decoder complexity and makes it a first-choice algorithm for high-throughput high-rate decoding of convolutional and turbo codes.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128595801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-Complexity Centralized Multi-Cell Radio Resource Allocation for 5G URLLC","authors":"A. Karimi, K. Pedersen, P. Mogensen","doi":"10.1109/WCNC45663.2020.9120469","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120469","url":null,"abstract":"This paper addresses the problem of down-link centralized multi-cell scheduling for ultra-reliable lowlatency communications in a fifth generation New Radio (5G NR) system. We propose a low-complexity centralized packet scheduling algorithm to support quality of service requirements of URLLC services. Results from advanced 5G NR system-level simulations are presented to assess the performance of the proposed solution. It is shown that the centralized architecture significantly improves the URLLC latency. The proposed algorithm achieves gains of 99% and 90% URLLC latency reduction in comparison to distributed scheduling and spectral efficient dynamic point selection.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127035168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Patch Antenna Arrays Beam Steering for Enhanced LEO Nanosatellite Communications","authors":"N. J. H. Marcano, Hannes Bartle, R. Jacobsen","doi":"10.1109/WCNC45663.2020.9120518","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120518","url":null,"abstract":"Given the growing demand of high-performance communication solutions on high-constraint Low Earth Orbit (LEO) small satellites, in this work we propose a set of designs of patch antenna arrays for CubeSats in the X band that are suitable for satellite-to-ground and Inter-Satellite Link (ISL) communications for LEO. In our analysis we consider the unit cell geometry as well as the array design as parameters. The parameter space is evaluated using the Finite Element Method (FEM) analysis software CST Microwave Studio. We transfer the designs evaluated in CST to AGI Systems ToolKit (STK) to evaluate the influence of each parameter on the link budget for different passes and attitude noise conditions. Our results show that it is possible to achieve a 12-15dB gain in the link budget for the given scenarios. We also observe that such antenna arrays can provide satisfactory attitude inaccuracy compensation with a phase shifter quantization as low as 2 bits.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130014561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wang Pi, Pengtao Yang, Dongliang Duan, Chen Chen, Xiang Cheng, Liuqing Yang
{"title":"Dynamic Model Based Malicious Collaborator Detection in Cooperative Tracking","authors":"Wang Pi, Pengtao Yang, Dongliang Duan, Chen Chen, Xiang Cheng, Liuqing Yang","doi":"10.1109/WCNC45663.2020.9120552","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120552","url":null,"abstract":"The mobility status of vehicles play a crucial role in most tasks of Autonomous Vehicles (AVs) and Intelligent Transportation System (ITS). To operate securely, a precise, stable and robust mobility tracking system is essential. Compared with self-tracking that relies only on mobility observations from on-board sensors (e.g. Global Positioning System (GPS), Inertial Measurement Unit (IMU) and camera), cooperative tracking increases the precision and reliability of mobility data greatly by integrating observations from road side units and nearby vehicles through V2X communications. Nevertheless, cooperative tracking can be quite vulnerable if there are malicious collaborators sending bogus observations in the network. In this paper, we present a dynamic sequential detection algorithm, dynamic model based mean state detection (DMMSD), to exclude bogus mobility data. Simulations validate the effectiveness and robustness of the proposed algorithm as compared with existing approaches.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128965626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Average Secrecy Capacity of SIMO k-μ Shadowed Fading Channels with Multiple Eavesdroppers","authors":"Jiangfeng Sun, Hongxia Bie, Xingwang Li, Khaled Maaiuf Rabie, R. Kharel","doi":"10.1109/WCNC45663.2020.9120598","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120598","url":null,"abstract":"In this paper, we analyze the security capability of single-input multiple-output wireless transmission systems over k-μ shadowed fading channels in the presence of multiple eavesdroppers. Our security analysis relies on an important standard, i.e., average secrecy capacity which is more difficult and suitable for analyzing active eavesdropping scenario than secure outage probability and probability of strictly positive secrecy capacity. The novel expression of average secrecy capacity over k-μ shadowed fading channels with multiple eavesdroppers is deduced. The results of Monte Carlo simulation fully prove the correctness of our theoretical derivation. Through the obtained results, we observe that large antenna quantity in the highest signal-to-noise ratio regime, small number of the eavesdroppers, and small signal-to-noise-ratio of eavesdropping link will enhance confidentiality of the system under consideration.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125386635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance Analysis of Opportunistic Millimeter Wave Cloud-RAN with Nakagami-Blockage Channels","authors":"B. Maham","doi":"10.1109/WCNC45663.2020.9120727","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120727","url":null,"abstract":"In this paper, we consider an uplink Cloud Radio Access Network (RAN) transmission from a user served by multiple remote radio heads (RRHs) which are connected to each other via base band unit (BBU) pool which form a centralized processing. We assume opportunistic detection in which the best RRH is selected at a time to transfer the received message to BBU pool. In this case, we can achieve the diversity gain by choosing the proper RRH and reduce fronthaul traffic by occupying a single link. As another enabling technology for 5G and Beyond, we consider mmWave communications. Since LOS/NLOS components are essential in modeling mmWave bands, we use Nakagami-m channels. In addition, for blockage effect of mmWave bands, we assume random blockage model. For performance analysis, closed form expressions for outage probability and ergodic capacity are derived. Furthermore the analytical results are confirmed by comparing them with simulation results. It is shown that opportunistic scheme outperforms maximum ratio beamforming in which all RRHs are contributing in detection of the mobile user signal.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125394350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengyu Cong, Chengjian Sun, Dong Liu, Chenyang Yang
{"title":"Optimizing Caching Policy and Bandwidth Allocation Towards User Fairness","authors":"Pengyu Cong, Chengjian Sun, Dong Liu, Chenyang Yang","doi":"10.1109/WCNC45663.2020.9120754","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120754","url":null,"abstract":"User fairness is an important metric for cellular systems. It has been widely considered for wireless transmission when optimizing radio resource allocation but rarely considered for femto-caching. In this paper, we optimize caching and bandwidth allocation policies to improve long-term user fairness during content placement and content delivery by harnessing heterogeneous user preference. To this end, we maximize the minimal average data rate, where the average is taken over large-and small-scale channel gains as well as individual user requests. This gives rise to a complicated two-timescale optimization problem involving functional optimization. The objective function of the problem does not have closed-form expression due to unknown user preference and channel distributions, and the “variables” to be optimized include a function. To solve such a challenging problem, we first optimize bandwidth allocation policy given arbitrary caching policy, user locations and user requests, whose structure can be found. We next optimize the caching policy given the optimized bandwidth allocation policy. To handle the difficulty of unknown distributions, we resort to stochastic optimization. Simulation results show that optimizing caching policy exploiting user preference can support much higher minimal average rate than optimizing caching policy based on content popularity when user preferences are less similar. Besides, better user fairness can be achieved by optimizing caching policy than by optimizing bandwidth allocation.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126640228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cross-Layer Resource Allocation in NOMA Systems with Dynamic Traffic Arrivals","authors":"Huiyi Ding, Ka-Cheong Leung","doi":"10.1109/WCNC45663.2020.9120817","DOIUrl":"https://doi.org/10.1109/WCNC45663.2020.9120817","url":null,"abstract":"Non-orthogonal multiple access (NOMA) has become a potential candidate to satisfy the heterogeneous demands in the fifth generation of wireless communication systems. With the optimization on the resource allocation, NOMA can further enhance the system performance. This paper proposes a cross-layer resource allocation framework for downlink NOMA systems. The problem is formulated as a stochastic problem to minimize the long-term total power consumption with dynamic traffic arrivals and time-varying channel under limited feedback. Then, this problem can be transformed to a rate control problem and a mixed-integer programming resource allocation problem solved at each time slot based on the Lyapunov optimization. To reduce the computational complexity, we devise an efficient suboptimal resource allocation algorithm with the dynamic penalty factor. The simulation results show that our proposed algorithms can reduce the power consumption compared with the two baseline algorithms while satisfying the QoS requirements.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123382180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}