Dynamic Model Based Malicious Collaborator Detection in Cooperative Tracking

Wang Pi, Pengtao Yang, Dongliang Duan, Chen Chen, Xiang Cheng, Liuqing Yang
{"title":"Dynamic Model Based Malicious Collaborator Detection in Cooperative Tracking","authors":"Wang Pi, Pengtao Yang, Dongliang Duan, Chen Chen, Xiang Cheng, Liuqing Yang","doi":"10.1109/WCNC45663.2020.9120552","DOIUrl":null,"url":null,"abstract":"The mobility status of vehicles play a crucial role in most tasks of Autonomous Vehicles (AVs) and Intelligent Transportation System (ITS). To operate securely, a precise, stable and robust mobility tracking system is essential. Compared with self-tracking that relies only on mobility observations from on-board sensors (e.g. Global Positioning System (GPS), Inertial Measurement Unit (IMU) and camera), cooperative tracking increases the precision and reliability of mobility data greatly by integrating observations from road side units and nearby vehicles through V2X communications. Nevertheless, cooperative tracking can be quite vulnerable if there are malicious collaborators sending bogus observations in the network. In this paper, we present a dynamic sequential detection algorithm, dynamic model based mean state detection (DMMSD), to exclude bogus mobility data. Simulations validate the effectiveness and robustness of the proposed algorithm as compared with existing approaches.","PeriodicalId":415064,"journal":{"name":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC45663.2020.9120552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mobility status of vehicles play a crucial role in most tasks of Autonomous Vehicles (AVs) and Intelligent Transportation System (ITS). To operate securely, a precise, stable and robust mobility tracking system is essential. Compared with self-tracking that relies only on mobility observations from on-board sensors (e.g. Global Positioning System (GPS), Inertial Measurement Unit (IMU) and camera), cooperative tracking increases the precision and reliability of mobility data greatly by integrating observations from road side units and nearby vehicles through V2X communications. Nevertheless, cooperative tracking can be quite vulnerable if there are malicious collaborators sending bogus observations in the network. In this paper, we present a dynamic sequential detection algorithm, dynamic model based mean state detection (DMMSD), to exclude bogus mobility data. Simulations validate the effectiveness and robustness of the proposed algorithm as compared with existing approaches.
基于动态模型的协同跟踪恶意协作者检测
在自动驾驶汽车和智能交通系统的大多数任务中,车辆的移动状态起着至关重要的作用。为了安全操作,一个精确、稳定和强大的移动跟踪系统是必不可少的。与仅依赖车载传感器(如全球定位系统(GPS)、惯性测量单元(IMU)和摄像头)的移动观测数据的自跟踪相比,协同跟踪通过V2X通信整合路边单元和附近车辆的观测数据,大大提高了移动数据的精度和可靠性。然而,如果有恶意的合作者在网络中发送虚假的观察结果,合作跟踪就会非常脆弱。本文提出了一种动态序列检测算法——基于动态模型的平均状态检测(DMMSD),用于排除虚假移动数据。与现有方法相比,仿真验证了该算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信